IoTDQ: An Industrial IoT Data Analysis Library for Apache IoTDB
There is a growing demand for time series data analysis in industry areas. Apache IoTDB is a time series database designed for the Internet of Things (IoT) with enhanced storage and I/O performance. With User-Defined Functions (UDF) provided, computation for time series can be executed on Apache IoT...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Tsinghua University Press
2024-03-01
|
Series: | Big Data Mining and Analytics |
Subjects: | |
Online Access: | https://www.sciopen.com/article/10.26599/BDMA.2023.9020010 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | There is a growing demand for time series data analysis in industry areas. Apache IoTDB is a time series database designed for the Internet of Things (IoT) with enhanced storage and I/O performance. With User-Defined Functions (UDF) provided, computation for time series can be executed on Apache IoTDB directly. To satisfy most of the common requirements in industrial time series analysis, we create a UDF library, IoTDQ, on Apache IoTDB. This library integrates stream computation functions on data quality analysis, data profiling, anomaly detection, data repairing, etc. IoTDQ enables users to conduct a wide range of analyses, such as monitoring, error diagnosis, equipment reliability analysis. It provides a framework for users to examine IoT time series with data quality problems. Experiments show that IoTDQ keeps the same level of performance compared to mainstream alternatives, and shortens I/O consumption for Apache IoTDB users. |
---|---|
ISSN: | 2096-0654 |