Rigidity of symmetric simplicial complexes and the lower bound theorem

We show that if $\Gamma $ is a point group of $\mathbb {R}^{k+1}$ of order two for some $k\geq 2$ and $\mathcal {S}$ is a k-pseudomanifold which has a free automorphism of order two, then either $\mathcal {S}$ has a $\Gamma $ -symmetric infinitesimally rigid...

Full description

Saved in:
Bibliographic Details
Main Authors: James Cruickshank, Bill Jackson, Shin-ichi Tanigawa
Format: Article
Language:English
Published: Cambridge University Press 2025-01-01
Series:Forum of Mathematics, Sigma
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2050509424001506/type/journal_article
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We show that if $\Gamma $ is a point group of $\mathbb {R}^{k+1}$ of order two for some $k\geq 2$ and $\mathcal {S}$ is a k-pseudomanifold which has a free automorphism of order two, then either $\mathcal {S}$ has a $\Gamma $ -symmetric infinitesimally rigid realisation in ${\mathbb R}^{k+1}$ or $k=2$ and $\Gamma $ is a half-turn rotation group. This verifies a conjecture made by Klee, Nevo, Novik and Zheng for the case when $\Gamma $ is a point-inversion group. Our result implies that Stanley’s lower bound theorem for centrally symmetric polytopes extends to pseudomanifolds with a free simplicial automorphism of order 2, thus verifying (the inequality part of) another conjecture of Klee, Nevo, Novik and Zheng. Both results actually apply to a much larger class of simplicial complexes – namely, the circuits of the simplicial matroid. The proof of our rigidity result adapts earlier ideas of Fogelsanger to the setting of symmetric simplicial complexes.
ISSN:2050-5094