Reidemeister torsion and integrable Hamiltonian systems

In this paper, we compute the Reidemeister torsion of an isoenergetic surface for the integrable Hamiltonian system on the 4-dimensional symplectic manifold. We use the spectral sequence defined by the filtration and following Floer-Witten ideas we bring into play the orbits connecting the critical...

Full description

Saved in:
Bibliographic Details
Main Authors: Alexander Fel'shtyn, Hector Sánchez-Morgado
Format: Article
Language:English
Published: Wiley 1999-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171299226890
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832553550636384256
author Alexander Fel'shtyn
Hector Sánchez-Morgado
author_facet Alexander Fel'shtyn
Hector Sánchez-Morgado
author_sort Alexander Fel'shtyn
collection DOAJ
description In this paper, we compute the Reidemeister torsion of an isoenergetic surface for the integrable Hamiltonian system on the 4-dimensional symplectic manifold. We use the spectral sequence defined by the filtration and following Floer-Witten ideas we bring into play the orbits connecting the critical submanifolds.
format Article
id doaj-art-6a52ab25ed55452eaa823d50ecae67c0
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 1999-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-6a52ab25ed55452eaa823d50ecae67c02025-02-03T05:53:44ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251999-01-0122468970410.1155/S0161171299226890Reidemeister torsion and integrable Hamiltonian systemsAlexander Fel'shtyn0Hector Sánchez-Morgado1Institut für Mathematik, E.-M.-Arndt-Universität Greifswald, Jahn-strasse 15a, Greifswald D-17489, GermanyInstituto de Mathematicas, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, D. F., Mexico C. P. 04510, MexicoIn this paper, we compute the Reidemeister torsion of an isoenergetic surface for the integrable Hamiltonian system on the 4-dimensional symplectic manifold. We use the spectral sequence defined by the filtration and following Floer-Witten ideas we bring into play the orbits connecting the critical submanifolds.http://dx.doi.org/10.1155/S0161171299226890The Reidemeister torsionintegrable Hamiltonian systemsisoenergetic surfacesymplectic manifoldBott integralcritical circles.
spellingShingle Alexander Fel'shtyn
Hector Sánchez-Morgado
Reidemeister torsion and integrable Hamiltonian systems
International Journal of Mathematics and Mathematical Sciences
The Reidemeister torsion
integrable Hamiltonian systems
isoenergetic surface
symplectic manifold
Bott integral
critical circles.
title Reidemeister torsion and integrable Hamiltonian systems
title_full Reidemeister torsion and integrable Hamiltonian systems
title_fullStr Reidemeister torsion and integrable Hamiltonian systems
title_full_unstemmed Reidemeister torsion and integrable Hamiltonian systems
title_short Reidemeister torsion and integrable Hamiltonian systems
title_sort reidemeister torsion and integrable hamiltonian systems
topic The Reidemeister torsion
integrable Hamiltonian systems
isoenergetic surface
symplectic manifold
Bott integral
critical circles.
url http://dx.doi.org/10.1155/S0161171299226890
work_keys_str_mv AT alexanderfelshtyn reidemeistertorsionandintegrablehamiltoniansystems
AT hectorsanchezmorgado reidemeistertorsionandintegrablehamiltoniansystems