Reidemeister torsion and integrable Hamiltonian systems
In this paper, we compute the Reidemeister torsion of an isoenergetic surface for the integrable Hamiltonian system on the 4-dimensional symplectic manifold. We use the spectral sequence defined by the filtration and following Floer-Witten ideas we bring into play the orbits connecting the critical...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
1999-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Subjects: | |
Online Access: | http://dx.doi.org/10.1155/S0161171299226890 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832553550636384256 |
---|---|
author | Alexander Fel'shtyn Hector Sánchez-Morgado |
author_facet | Alexander Fel'shtyn Hector Sánchez-Morgado |
author_sort | Alexander Fel'shtyn |
collection | DOAJ |
description | In this paper, we compute the Reidemeister torsion of an isoenergetic surface for the integrable Hamiltonian system on the 4-dimensional symplectic manifold. We use the spectral sequence defined by the filtration and following Floer-Witten ideas we bring into play the orbits connecting the critical submanifolds. |
format | Article |
id | doaj-art-6a52ab25ed55452eaa823d50ecae67c0 |
institution | Kabale University |
issn | 0161-1712 1687-0425 |
language | English |
publishDate | 1999-01-01 |
publisher | Wiley |
record_format | Article |
series | International Journal of Mathematics and Mathematical Sciences |
spelling | doaj-art-6a52ab25ed55452eaa823d50ecae67c02025-02-03T05:53:44ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251999-01-0122468970410.1155/S0161171299226890Reidemeister torsion and integrable Hamiltonian systemsAlexander Fel'shtyn0Hector Sánchez-Morgado1Institut für Mathematik, E.-M.-Arndt-Universität Greifswald, Jahn-strasse 15a, Greifswald D-17489, GermanyInstituto de Mathematicas, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, D. F., Mexico C. P. 04510, MexicoIn this paper, we compute the Reidemeister torsion of an isoenergetic surface for the integrable Hamiltonian system on the 4-dimensional symplectic manifold. We use the spectral sequence defined by the filtration and following Floer-Witten ideas we bring into play the orbits connecting the critical submanifolds.http://dx.doi.org/10.1155/S0161171299226890The Reidemeister torsionintegrable Hamiltonian systemsisoenergetic surfacesymplectic manifoldBott integralcritical circles. |
spellingShingle | Alexander Fel'shtyn Hector Sánchez-Morgado Reidemeister torsion and integrable Hamiltonian systems International Journal of Mathematics and Mathematical Sciences The Reidemeister torsion integrable Hamiltonian systems isoenergetic surface symplectic manifold Bott integral critical circles. |
title | Reidemeister torsion and integrable Hamiltonian systems |
title_full | Reidemeister torsion and integrable Hamiltonian systems |
title_fullStr | Reidemeister torsion and integrable Hamiltonian systems |
title_full_unstemmed | Reidemeister torsion and integrable Hamiltonian systems |
title_short | Reidemeister torsion and integrable Hamiltonian systems |
title_sort | reidemeister torsion and integrable hamiltonian systems |
topic | The Reidemeister torsion integrable Hamiltonian systems isoenergetic surface symplectic manifold Bott integral critical circles. |
url | http://dx.doi.org/10.1155/S0161171299226890 |
work_keys_str_mv | AT alexanderfelshtyn reidemeistertorsionandintegrablehamiltoniansystems AT hectorsanchezmorgado reidemeistertorsionandintegrablehamiltoniansystems |