A note on global stability for malaria infections model with latencies

A recent paper [Y. Xiao and X. Zou, On latencies in malaria infections and their impact on the disease dynamics, Math. Biosci. Eng., 10(2) 2013, 463-481.] presented a mathematical model to investigate the spread of malaria. The model is obtained by modifying the classic Ross-Macdonald model by incor...

Full description

Saved in:
Bibliographic Details
Main Authors: Jinliang Wang, Jingmei Pang, Toshikazu Kuniya
Format: Article
Language:English
Published: AIMS Press 2014-02-01
Series:Mathematical Biosciences and Engineering
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mbe.2014.11.995
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A recent paper [Y. Xiao and X. Zou, On latencies in malaria infections and their impact on the disease dynamics, Math. Biosci. Eng., 10(2) 2013, 463-481.] presented a mathematical model to investigate the spread of malaria. The model is obtained by modifying the classic Ross-Macdonald model by incorporating latencies both for human beings and female mosquitoes. It is realistic to consider the new model with latencies differing from individuals to individuals. However, the analysis in that paper did not resolve the global malaria disease dynamics when $\Re_0>1$. The authors just showed global stability of endemic equilibrium for two specific probability functions: exponential functions and step functions. Here, we show that if there is no recovery, the endemic equilibrium is globally stable for $\Re_0>1$ without other additional conditions. The approach used here, is to use a direct Lyapunov functional and Lyapunov-LaSalle invariance principle.
ISSN:1551-0018