Analysis and Optimization of a Moving Magnet Permanent Magnet Synchronous Planar Motor with Split Halbach Arrays

This paper investigates an improved permanent magnet synchronous planar motor (PMSPM) featuring a moving magnet configuration to enhance thrust density and positioning accuracy. A novel split Halbach permanent magnet (PM) array is introduced, and the optimization begins with adjusting the pole size...

Full description

Saved in:
Bibliographic Details
Main Authors: Ronglu Wang, Lu Zhang, Chenyang Shi, Chunqiu Zhao, Kai Yang
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/6/1388
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper investigates an improved permanent magnet synchronous planar motor (PMSPM) featuring a moving magnet configuration to enhance thrust density and positioning accuracy. A novel split Halbach permanent magnet (PM) array is introduced, and the optimization begins with adjusting the pole size ratio <i>α</i>, analyzing the flux density distribution, and calculating thrust using an electromagnetic force model. Results demonstrate that the optimized Halbach array reduces thrust fluctuations and improves the uniformity of the air gap magnetic field. Multi-objective optimization using the non-dominated sorting genetic algorithm-II (NSGA-II) fine-tunes auxiliary magnet width and magnetization angles, resulting in a segmented auxiliary permanent magnet structure that achieves a 9.1% improvement in thrust density over conventional designs. Additionally, the optimized Halbach array effectively reduces thrust fluctuations and improves the uniformity of the air gap magnetic field, addressing key challenges in planar motor design. Extensive simulations and experimental validation demonstrate the superior performance of the proposed structure in terms of thrust density and positioning precision. These enhancements make the PMSPM suitable for high-precision, high-dynamic industrial applications. A detailed comparison of motor parameters and thrust performance validates the effectiveness of the proposed structure.
ISSN:1996-1073