Design of a Highly Efficient Subwavelength Antireflective Structure for Solar Cells
An efficient optical antireflective (AR) structure plays a vital role in high-performance thin-film solar cells. Here, we design a surface relief AR structure consisting of a two-dimensional (2D) array of a subwavelength ring and pillar-shaped feature, capable of suppressing optical reflection over...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2022-01-01
|
Series: | International Journal of Optics |
Online Access: | http://dx.doi.org/10.1155/2022/9963336 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An efficient optical antireflective (AR) structure plays a vital role in high-performance thin-film solar cells. Here, we design a surface relief AR structure consisting of a two-dimensional (2D) array of a subwavelength ring and pillar-shaped feature, capable of suppressing optical reflection over a wide spectral window of the solar spectrum. Our simulations show that the weighted average reflectance of the subwavelength AR structure is as low as 4.2% in the 400–1100 nm spectral range in the normal incidence condition and almost 10-fold reduction compared with a bare silicon surface. When placed on the front side of a simple Si thin-film photovoltaic solar cell, this subwavelength AR structure leads to an improved light absorption with simulated results showing an increase of 53% short-circuit current compared to a flat solar cell. Besides, our simulations show that this AR structure could, in principle, perform well against reasonable fabrication errors. |
---|---|
ISSN: | 1687-9392 |