On the characteristic function of a sum of M-dependent random variables

Let S=f1+f2+…+fn be a sum of 1-dependent random variables of zero mean. Let σ2=ES2, L=σ−3∑1≦i≦nE|fi|3. There is a universal constant a such that for a|t|L<1, we have|Eexp(itSσ−1)|≦(1+a|t|)sup{(a|t|L)−1/4lnL,   exp(−t2/80)}.This bound is a very useful tool in proving Berry-Esseen theorems....

Full description

Saved in:
Bibliographic Details
Main Author: Wansoo T. Rhee
Format: Article
Language:English
Published: Wiley 1986-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171286000492
Tags: Add Tag
No Tags, Be the first to tag this record!