Tensor products of commutative Banach algebras
Let A1, A2 be commutative semisimple Banach algebras and A1⊗∂A2 be their projective tensor product. We prove that, if A1⊗∂A2 is a group algebra (measure algebra) of a locally compact abelian group, then so are A1 and A2. As a consequence, we prove that, if G is a locally compact abelian group and A...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
1982-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Subjects: | |
Online Access: | http://dx.doi.org/10.1155/S0161171282000477 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let A1, A2 be commutative semisimple Banach algebras and A1⊗∂A2 be their projective tensor product. We prove that, if A1⊗∂A2 is a group algebra (measure algebra) of a locally compact abelian group, then so are A1 and A2. As a consequence, we prove that, if G is a locally compact abelian group and A is a comutative semi-simple Banach algebra, then the Banach algebra L1(G,A) of A-valued Bochner integrable functions on G is a group algebra if and only if A is a group algebra. Furthermore, if A has the Radon-Nikodym property, then the Banach algebra M(G,A) of A-valued regular Borel measures of bounded variation on G is a measure algebra only if A is a measure algebra. |
---|---|
ISSN: | 0161-1712 1687-0425 |