Door-Triggering Mechanism for Large-Scale Rapid-Decompression Experiments

For large-scale rapid-decompression experiments, a new door-triggering mechanism is proposed for a 750 mm diameter pressure relief channel. Quick opening of the door is realized by utilizing a spring-based release mechanism to instantly convert large amounts of elastic potential energy into kinetic...

Full description

Saved in:
Bibliographic Details
Main Authors: Lei Zhang, Xiao Han, Xinbin Zhang, Jihong Yan
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:International Journal of Aerospace Engineering
Online Access:http://dx.doi.org/10.1155/2020/6841651
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For large-scale rapid-decompression experiments, a new door-triggering mechanism is proposed for a 750 mm diameter pressure relief channel. Quick opening of the door is realized by utilizing a spring-based release mechanism to instantly convert large amounts of elastic potential energy into kinetic energy. To counteract the significant inertial effect of the high-speed door on the chamber, a flywheel-based cushioning mechanism is designed to absorb the kinetic energy of the door after opening. This carefully designed mechanism consists of the closing mechanism, energy storage unit, locking/releasing mechanism, and cushioning mechanism. Kinetic models are established to analyze the dynamic properties. Simulation results reveal that it takes approximately 280 ms for the door to open from 0° to 90°. This work can provide insights for the development of large-scale rapid-decompression equipment in the future.
ISSN:1687-5966
1687-5974