Inverse Projective Synchronization between Two Different Hyperchaotic Systems with Fractional Order
This paper mainly investigates a novel inverse projective synchronization between two different fractional-order hyperchaotic systems, that is, the fractional-order hyperchaotic Lorenz system and the fractional-order hyperchaotic Chen system. By using the stability theory of fractional-order differe...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2012-01-01
|
Series: | Journal of Applied Mathematics |
Online Access: | http://dx.doi.org/10.1155/2012/762807 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper mainly investigates a novel inverse projective synchronization between two different fractional-order hyperchaotic systems, that is, the fractional-order hyperchaotic Lorenz system and the fractional-order hyperchaotic Chen system. By using the stability theory of fractional-order differential equations and Lyapunov equations for fractional-order systems, two kinds of suitable controllers for achieving inverse projective synchronization are designed, in which the generalized synchronization, antisynchronization, and projective synchronization of fractional-order hyperchaotic Lorenz system and fractional-order hyperchaotic Chen system are also successfully achieved, respectively. Finally, simulations are presented to demonstrate the validity and feasibility of the proposed method. |
---|---|
ISSN: | 1110-757X 1687-0042 |