Exploring the processes controlling secondary inorganic aerosol: evaluating the global GEOS-Chem simulation using a suite of aircraft campaigns

<p>Secondary inorganic aerosols (sulfate, nitrate, and ammonium, SNA) are major contributors to fine particulate matter. Predicting concentrations of these species is complicated by the cascade of processes that control their abundance, including emissions, chemistry, thermodynamic partitionin...

Full description

Saved in:
Bibliographic Details
Main Authors: O. G. Norman, C. L. Heald, S. Bililign, P. Campuzano-Jost, H. Coe, M. N. Fiddler, J. R. Green, J. L. Jimenez, K. Kaiser, J. Liao, A. M. Middlebrook, B. A. Nault, J. B. Nowak, J. Schneider, A. Welti
Format: Article
Language:English
Published: Copernicus Publications 2025-01-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/25/771/2025/acp-25-771-2025.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832592354848014336
author O. G. Norman
C. L. Heald
C. L. Heald
C. L. Heald
S. Bililign
P. Campuzano-Jost
H. Coe
H. Coe
M. N. Fiddler
J. R. Green
J. L. Jimenez
K. Kaiser
J. Liao
J. Liao
A. M. Middlebrook
B. A. Nault
B. A. Nault
B. A. Nault
J. B. Nowak
J. Schneider
A. Welti
author_facet O. G. Norman
C. L. Heald
C. L. Heald
C. L. Heald
S. Bililign
P. Campuzano-Jost
H. Coe
H. Coe
M. N. Fiddler
J. R. Green
J. L. Jimenez
K. Kaiser
J. Liao
J. Liao
A. M. Middlebrook
B. A. Nault
B. A. Nault
B. A. Nault
J. B. Nowak
J. Schneider
A. Welti
author_sort O. G. Norman
collection DOAJ
description <p>Secondary inorganic aerosols (sulfate, nitrate, and ammonium, SNA) are major contributors to fine particulate matter. Predicting concentrations of these species is complicated by the cascade of processes that control their abundance, including emissions, chemistry, thermodynamic partitioning, and removal. In this study, we use 11 flight campaigns to evaluate the GEOS-Chem model performance for SNA. Across all the campaigns, the model performance is best for sulfate (<span class="inline-formula"><i>R</i><sup>2</sup></span> <span class="inline-formula">=</span> 0.51; normalized mean bias (NMB) <span class="inline-formula">=</span> 0.11) and worst for nitrate (<span class="inline-formula"><i>R</i><sup>2</sup>=0.22</span>; NMB <span class="inline-formula">=</span> 1.76), indicating substantive model deficiencies in the nitrate simulation. Thermodynamic partitioning reproduces the total particulate nitrate well (<span class="inline-formula"><i>R</i><sup>2</sup>=0.79</span>; NMB <span class="inline-formula">=</span> 0.09), but actual partitioning (i.e., <span class="inline-formula"><i>ε</i></span>(NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup><mo>)</mo><mo>=</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="22pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="3b35b7ceb952b67a7d90687e397a043a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-771-2025-ie00001.svg" width="22pt" height="16pt" src="acp-25-771-2025-ie00001.png"/></svg:svg></span></span> NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="78ed0f7e81615226176402cdd6a1afd5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-771-2025-ie00002.svg" width="9pt" height="16pt" src="acp-25-771-2025-ie00002.png"/></svg:svg></span></span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="165b352473919034209a9d51d0eaf41d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-771-2025-ie00003.svg" width="8pt" height="14pt" src="acp-25-771-2025-ie00003.png"/></svg:svg></span></span> TNO<span class="inline-formula"><sub>3</sub></span>) is challenging to assess given the limited sets of full gas- and particle-phase observations needed for ISORROPIA II. In particular, ammonia observations are not often included in aircraft<span id="page772"/> campaigns, and more routine measurements would help constrain sources of SNA model bias. Model performance is sensitive to changes in emissions and dry and wet deposition, with modest improvements associated with the inclusion of different chemical loss and production pathways (i.e., acid uptake on dust, N<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>5</sub></span> uptake, and NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="9f81e901bf06635e082f559a787da68a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-771-2025-ie00004.svg" width="9pt" height="16pt" src="acp-25-771-2025-ie00004.png"/></svg:svg></span></span> photolysis). However, these sensitivity tests show only modest reduction in the nitrate bias, with no improvement to the model skill (i.e., <span class="inline-formula"><i>R</i><sup>2</sup></span>), implying that more work is needed to improve the description of loss and production of nitrate and SNA as a whole.</p>
format Article
id doaj-art-693a93d6981149afb98c3fe41393434f
institution Kabale University
issn 1680-7316
1680-7324
language English
publishDate 2025-01-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj-art-693a93d6981149afb98c3fe41393434f2025-01-21T10:08:14ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242025-01-012577179510.5194/acp-25-771-2025Exploring the processes controlling secondary inorganic aerosol: evaluating the global GEOS-Chem simulation using a suite of aircraft campaignsO. G. Norman0C. L. Heald1C. L. Heald2C. L. Heald3S. Bililign4P. Campuzano-Jost5H. Coe6H. Coe7M. N. Fiddler8J. R. Green9J. L. Jimenez10K. Kaiser11J. Liao12J. Liao13A. M. Middlebrook14B. A. Nault15B. A. Nault16B. A. Nault17J. B. Nowak18J. Schneider19A. Welti20Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USADepartment of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USADepartment of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USAnow at: Department of Environmental Systems Science, ETH Zurich, Zurich, SwitzerlandDepartment of Physics, North Carolina Agricultural and Technical State University, Greensboro, NC, USADepartment of Chemistry and Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder, CO, USADepartment of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 1QD, UKNational Centre for Atmospheric Sciences, University of Manchester, Oxford Road, Manchester, M13 1QD, UKDepartment of Chemistry, North Carolina Agricultural and Technical State University, Greensboro, NC, USADepartment of Environmental Sciences & Engineering, University of North Carolina, Chapel Hill, NC, USADepartment of Chemistry and Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder, CO, USAParticle Chemistry Department, Max Planck Institute for Chemistry, Mainz, GermanyNASA Goddard Space Flight Center, Greenbelt, MD, USAGoddard Earth Sciences Technology and Research (GESTAR) II, University of Maryland, College Park, MD, USANOAA Chemical Sciences Laboratory, Boulder, CO, USADepartment of Chemistry and Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder, CO, USADepartment of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USACenter for Aerosol and Cloud Chemistry, Aerodyne Research, Inc., Billerica, MA, USANASA Langley Research Center, Hampton, VA, USAParticle Chemistry Department, Max Planck Institute for Chemistry, Mainz, GermanyFinnish Meteorological Institute, Helsinki, Finland<p>Secondary inorganic aerosols (sulfate, nitrate, and ammonium, SNA) are major contributors to fine particulate matter. Predicting concentrations of these species is complicated by the cascade of processes that control their abundance, including emissions, chemistry, thermodynamic partitioning, and removal. In this study, we use 11 flight campaigns to evaluate the GEOS-Chem model performance for SNA. Across all the campaigns, the model performance is best for sulfate (<span class="inline-formula"><i>R</i><sup>2</sup></span> <span class="inline-formula">=</span> 0.51; normalized mean bias (NMB) <span class="inline-formula">=</span> 0.11) and worst for nitrate (<span class="inline-formula"><i>R</i><sup>2</sup>=0.22</span>; NMB <span class="inline-formula">=</span> 1.76), indicating substantive model deficiencies in the nitrate simulation. Thermodynamic partitioning reproduces the total particulate nitrate well (<span class="inline-formula"><i>R</i><sup>2</sup>=0.79</span>; NMB <span class="inline-formula">=</span> 0.09), but actual partitioning (i.e., <span class="inline-formula"><i>ε</i></span>(NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup><mo>)</mo><mo>=</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="22pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="3b35b7ceb952b67a7d90687e397a043a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-771-2025-ie00001.svg" width="22pt" height="16pt" src="acp-25-771-2025-ie00001.png"/></svg:svg></span></span> NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="78ed0f7e81615226176402cdd6a1afd5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-771-2025-ie00002.svg" width="9pt" height="16pt" src="acp-25-771-2025-ie00002.png"/></svg:svg></span></span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="165b352473919034209a9d51d0eaf41d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-771-2025-ie00003.svg" width="8pt" height="14pt" src="acp-25-771-2025-ie00003.png"/></svg:svg></span></span> TNO<span class="inline-formula"><sub>3</sub></span>) is challenging to assess given the limited sets of full gas- and particle-phase observations needed for ISORROPIA II. In particular, ammonia observations are not often included in aircraft<span id="page772"/> campaigns, and more routine measurements would help constrain sources of SNA model bias. Model performance is sensitive to changes in emissions and dry and wet deposition, with modest improvements associated with the inclusion of different chemical loss and production pathways (i.e., acid uptake on dust, N<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>5</sub></span> uptake, and NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="9f81e901bf06635e082f559a787da68a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-771-2025-ie00004.svg" width="9pt" height="16pt" src="acp-25-771-2025-ie00004.png"/></svg:svg></span></span> photolysis). However, these sensitivity tests show only modest reduction in the nitrate bias, with no improvement to the model skill (i.e., <span class="inline-formula"><i>R</i><sup>2</sup></span>), implying that more work is needed to improve the description of loss and production of nitrate and SNA as a whole.</p>https://acp.copernicus.org/articles/25/771/2025/acp-25-771-2025.pdf
spellingShingle O. G. Norman
C. L. Heald
C. L. Heald
C. L. Heald
S. Bililign
P. Campuzano-Jost
H. Coe
H. Coe
M. N. Fiddler
J. R. Green
J. L. Jimenez
K. Kaiser
J. Liao
J. Liao
A. M. Middlebrook
B. A. Nault
B. A. Nault
B. A. Nault
J. B. Nowak
J. Schneider
A. Welti
Exploring the processes controlling secondary inorganic aerosol: evaluating the global GEOS-Chem simulation using a suite of aircraft campaigns
Atmospheric Chemistry and Physics
title Exploring the processes controlling secondary inorganic aerosol: evaluating the global GEOS-Chem simulation using a suite of aircraft campaigns
title_full Exploring the processes controlling secondary inorganic aerosol: evaluating the global GEOS-Chem simulation using a suite of aircraft campaigns
title_fullStr Exploring the processes controlling secondary inorganic aerosol: evaluating the global GEOS-Chem simulation using a suite of aircraft campaigns
title_full_unstemmed Exploring the processes controlling secondary inorganic aerosol: evaluating the global GEOS-Chem simulation using a suite of aircraft campaigns
title_short Exploring the processes controlling secondary inorganic aerosol: evaluating the global GEOS-Chem simulation using a suite of aircraft campaigns
title_sort exploring the processes controlling secondary inorganic aerosol evaluating the global geos chem simulation using a suite of aircraft campaigns
url https://acp.copernicus.org/articles/25/771/2025/acp-25-771-2025.pdf
work_keys_str_mv AT ognorman exploringtheprocessescontrollingsecondaryinorganicaerosolevaluatingtheglobalgeoschemsimulationusingasuiteofaircraftcampaigns
AT clheald exploringtheprocessescontrollingsecondaryinorganicaerosolevaluatingtheglobalgeoschemsimulationusingasuiteofaircraftcampaigns
AT clheald exploringtheprocessescontrollingsecondaryinorganicaerosolevaluatingtheglobalgeoschemsimulationusingasuiteofaircraftcampaigns
AT clheald exploringtheprocessescontrollingsecondaryinorganicaerosolevaluatingtheglobalgeoschemsimulationusingasuiteofaircraftcampaigns
AT sbililign exploringtheprocessescontrollingsecondaryinorganicaerosolevaluatingtheglobalgeoschemsimulationusingasuiteofaircraftcampaigns
AT pcampuzanojost exploringtheprocessescontrollingsecondaryinorganicaerosolevaluatingtheglobalgeoschemsimulationusingasuiteofaircraftcampaigns
AT hcoe exploringtheprocessescontrollingsecondaryinorganicaerosolevaluatingtheglobalgeoschemsimulationusingasuiteofaircraftcampaigns
AT hcoe exploringtheprocessescontrollingsecondaryinorganicaerosolevaluatingtheglobalgeoschemsimulationusingasuiteofaircraftcampaigns
AT mnfiddler exploringtheprocessescontrollingsecondaryinorganicaerosolevaluatingtheglobalgeoschemsimulationusingasuiteofaircraftcampaigns
AT jrgreen exploringtheprocessescontrollingsecondaryinorganicaerosolevaluatingtheglobalgeoschemsimulationusingasuiteofaircraftcampaigns
AT jljimenez exploringtheprocessescontrollingsecondaryinorganicaerosolevaluatingtheglobalgeoschemsimulationusingasuiteofaircraftcampaigns
AT kkaiser exploringtheprocessescontrollingsecondaryinorganicaerosolevaluatingtheglobalgeoschemsimulationusingasuiteofaircraftcampaigns
AT jliao exploringtheprocessescontrollingsecondaryinorganicaerosolevaluatingtheglobalgeoschemsimulationusingasuiteofaircraftcampaigns
AT jliao exploringtheprocessescontrollingsecondaryinorganicaerosolevaluatingtheglobalgeoschemsimulationusingasuiteofaircraftcampaigns
AT ammiddlebrook exploringtheprocessescontrollingsecondaryinorganicaerosolevaluatingtheglobalgeoschemsimulationusingasuiteofaircraftcampaigns
AT banault exploringtheprocessescontrollingsecondaryinorganicaerosolevaluatingtheglobalgeoschemsimulationusingasuiteofaircraftcampaigns
AT banault exploringtheprocessescontrollingsecondaryinorganicaerosolevaluatingtheglobalgeoschemsimulationusingasuiteofaircraftcampaigns
AT banault exploringtheprocessescontrollingsecondaryinorganicaerosolevaluatingtheglobalgeoschemsimulationusingasuiteofaircraftcampaigns
AT jbnowak exploringtheprocessescontrollingsecondaryinorganicaerosolevaluatingtheglobalgeoschemsimulationusingasuiteofaircraftcampaigns
AT jschneider exploringtheprocessescontrollingsecondaryinorganicaerosolevaluatingtheglobalgeoschemsimulationusingasuiteofaircraftcampaigns
AT awelti exploringtheprocessescontrollingsecondaryinorganicaerosolevaluatingtheglobalgeoschemsimulationusingasuiteofaircraftcampaigns