Positive Solutions for a System of Nonlinear Semipositone Boundary Value Problems with Riemann-Liouville Fractional Derivatives

We study the existence of positive solutions for the system of nonlinear semipositone boundary value problems with Riemann-Liouville fractional derivatives D0+αD0+αu=f1t,u,u′,v,v′,  0<t<1, D0+αD0+αv=f2(t,u,u′,v,v′),  0<t<1, u0=u′0=u′(1)=D0+αu(0)=D0+α+1u(0)=D0+α+1u(1)=0, and v(0)=v′(0)=v′...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaowei Qiu, Jiafa Xu, Donal O’Regan, Yujun Cui
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2018/7351653
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832558729689563136
author Xiaowei Qiu
Jiafa Xu
Donal O’Regan
Yujun Cui
author_facet Xiaowei Qiu
Jiafa Xu
Donal O’Regan
Yujun Cui
author_sort Xiaowei Qiu
collection DOAJ
description We study the existence of positive solutions for the system of nonlinear semipositone boundary value problems with Riemann-Liouville fractional derivatives D0+αD0+αu=f1t,u,u′,v,v′,  0<t<1, D0+αD0+αv=f2(t,u,u′,v,v′),  0<t<1, u0=u′0=u′(1)=D0+αu(0)=D0+α+1u(0)=D0+α+1u(1)=0, and v(0)=v′(0)=v′(1)=D0+αv(0)=D0+α+1v(0)=D0+α+1v(1)=0, where α∈(2,3] is a real number and D0+α is the standard Riemann-Liouville fractional derivative of order α. Under some appropriate conditions for semipositone nonlinearities, we use the fixed point index to establish two existence theorems. Moreover, nonnegative concave and convex functions are used to depict the coupling behavior of our nonlinearities.
format Article
id doaj-art-68d71377af084fa899be12ec66310d30
institution Kabale University
issn 2314-8896
2314-8888
language English
publishDate 2018-01-01
publisher Wiley
record_format Article
series Journal of Function Spaces
spelling doaj-art-68d71377af084fa899be12ec66310d302025-02-03T01:31:39ZengWileyJournal of Function Spaces2314-88962314-88882018-01-01201810.1155/2018/73516537351653Positive Solutions for a System of Nonlinear Semipositone Boundary Value Problems with Riemann-Liouville Fractional DerivativesXiaowei Qiu0Jiafa Xu1Donal O’Regan2Yujun Cui3School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, ChinaSchool of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, ChinaSchool of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, IrelandState Key Laboratory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, ChinaWe study the existence of positive solutions for the system of nonlinear semipositone boundary value problems with Riemann-Liouville fractional derivatives D0+αD0+αu=f1t,u,u′,v,v′,  0<t<1, D0+αD0+αv=f2(t,u,u′,v,v′),  0<t<1, u0=u′0=u′(1)=D0+αu(0)=D0+α+1u(0)=D0+α+1u(1)=0, and v(0)=v′(0)=v′(1)=D0+αv(0)=D0+α+1v(0)=D0+α+1v(1)=0, where α∈(2,3] is a real number and D0+α is the standard Riemann-Liouville fractional derivative of order α. Under some appropriate conditions for semipositone nonlinearities, we use the fixed point index to establish two existence theorems. Moreover, nonnegative concave and convex functions are used to depict the coupling behavior of our nonlinearities.http://dx.doi.org/10.1155/2018/7351653
spellingShingle Xiaowei Qiu
Jiafa Xu
Donal O’Regan
Yujun Cui
Positive Solutions for a System of Nonlinear Semipositone Boundary Value Problems with Riemann-Liouville Fractional Derivatives
Journal of Function Spaces
title Positive Solutions for a System of Nonlinear Semipositone Boundary Value Problems with Riemann-Liouville Fractional Derivatives
title_full Positive Solutions for a System of Nonlinear Semipositone Boundary Value Problems with Riemann-Liouville Fractional Derivatives
title_fullStr Positive Solutions for a System of Nonlinear Semipositone Boundary Value Problems with Riemann-Liouville Fractional Derivatives
title_full_unstemmed Positive Solutions for a System of Nonlinear Semipositone Boundary Value Problems with Riemann-Liouville Fractional Derivatives
title_short Positive Solutions for a System of Nonlinear Semipositone Boundary Value Problems with Riemann-Liouville Fractional Derivatives
title_sort positive solutions for a system of nonlinear semipositone boundary value problems with riemann liouville fractional derivatives
url http://dx.doi.org/10.1155/2018/7351653
work_keys_str_mv AT xiaoweiqiu positivesolutionsforasystemofnonlinearsemipositoneboundaryvalueproblemswithriemannliouvillefractionalderivatives
AT jiafaxu positivesolutionsforasystemofnonlinearsemipositoneboundaryvalueproblemswithriemannliouvillefractionalderivatives
AT donaloregan positivesolutionsforasystemofnonlinearsemipositoneboundaryvalueproblemswithriemannliouvillefractionalderivatives
AT yujuncui positivesolutionsforasystemofnonlinearsemipositoneboundaryvalueproblemswithriemannliouvillefractionalderivatives