Positive Solutions for a System of Nonlinear Semipositone Boundary Value Problems with Riemann-Liouville Fractional Derivatives

We study the existence of positive solutions for the system of nonlinear semipositone boundary value problems with Riemann-Liouville fractional derivatives D0+αD0+αu=f1t,u,u′,v,v′,  0<t<1, D0+αD0+αv=f2(t,u,u′,v,v′),  0<t<1, u0=u′0=u′(1)=D0+αu(0)=D0+α+1u(0)=D0+α+1u(1)=0, and v(0)=v′(0)=v′...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaowei Qiu, Jiafa Xu, Donal O’Regan, Yujun Cui
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2018/7351653
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study the existence of positive solutions for the system of nonlinear semipositone boundary value problems with Riemann-Liouville fractional derivatives D0+αD0+αu=f1t,u,u′,v,v′,  0<t<1, D0+αD0+αv=f2(t,u,u′,v,v′),  0<t<1, u0=u′0=u′(1)=D0+αu(0)=D0+α+1u(0)=D0+α+1u(1)=0, and v(0)=v′(0)=v′(1)=D0+αv(0)=D0+α+1v(0)=D0+α+1v(1)=0, where α∈(2,3] is a real number and D0+α is the standard Riemann-Liouville fractional derivative of order α. Under some appropriate conditions for semipositone nonlinearities, we use the fixed point index to establish two existence theorems. Moreover, nonnegative concave and convex functions are used to depict the coupling behavior of our nonlinearities.
ISSN:2314-8896
2314-8888