Antagonistic Effects of Sublethal Concentrations of Certain Mixtures of Metal Oxide Nanoparticles and the Bulk (Al2O3, CuO, and SiO2) on Gill Histology in Clarias gariepinus

Background. The effect of nanoparticles (NPs) on aquatic environments is poorly studied. Aim. This study evaluates the toxicity of joint effects of these different metal nanoparticles and their bulk in mixtures (Al2O3, CuO, and SiO2) on fish using histological biomarker. Materials and Methods. The b...

Full description

Saved in:
Bibliographic Details
Main Authors: Amaeze Henry Nnamdi, Tam-Miette Dawarri Briggs, Oluwaseun Olusola Togunde, Henry Ebele Obanya
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:Journal of Nanotechnology
Online Access:http://dx.doi.org/10.1155/2019/7686597
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832566682022838272
author Amaeze Henry Nnamdi
Tam-Miette Dawarri Briggs
Oluwaseun Olusola Togunde
Henry Ebele Obanya
author_facet Amaeze Henry Nnamdi
Tam-Miette Dawarri Briggs
Oluwaseun Olusola Togunde
Henry Ebele Obanya
author_sort Amaeze Henry Nnamdi
collection DOAJ
description Background. The effect of nanoparticles (NPs) on aquatic environments is poorly studied. Aim. This study evaluates the toxicity of joint effects of these different metal nanoparticles and their bulk in mixtures (Al2O3, CuO, and SiO2) on fish using histological biomarker. Materials and Methods. The bulk and nano sizes of three salts (Al2O3, CuO, and SiO2) were used. Nanosizes ranged from 25 nm to 100 nm. The juvenile fishes of Clarias gariepinus (mean Length: 12.3 ± 3.5 cm; mean weight: 18.52 ± 6.41 g) were used for the acute and chronic toxicity tests. They were exposed to 7 mg/L each of the bulk and nano sizes of the three metallic oxides either singly or in mixtures for 28 days. The basis for the sublethal concentration was that the 96 hr acute toxicity of the varied sizes of the three metallic oxides was nontoxic up to the concentrations of 100 mg/L with no significant mortality at the highest exposure concentrations. The gills were collected for histopathology. Results. Of the three metal oxide nanoparticles, SiO was the most toxic, with histopathological alteration index (HAI) of 20.0, followed by nano-CuO (HAI, 10.0) and nano-Al2O3 (HAI, 2.0). In single exposure, the gill alterations include high frequencies of erosion of gill lamella (EGL), hypertrophy (HPT), oedema (OD), and necrosis (N). Less damage was observed at the combination of the metal oxide nanoparticles of SiO + Al2O3, SiO + CuO and SiO + Al2O3 + CuO in equal (1 : 1—HAI, 2 and 6; 1 : 1 : 1—HAI, 6) and unequal ratios (1 : 2—HAI, 16 and 6; 2 : 1—HAI, 8 and 6). Similarly, all bulk combinations were also antagonistic except for the equal ratio of bulk CuO (HAI, 20) and bulk Al2O3 (HAI, 10) that gave additive effect with HAI of 32. Conclusion. The joint actions of nano Al2O3 and CuO with SiO produced a low toxic effect, unlike the high toxicity of their single trials; this also indicates that nano Al2O3 and CuO are antagonists. Similarly, among the bulk metal oxides (SiO, Al2O3, and CuO), CuO was the most toxic. Bulk SiO and Al2O3 are antagonistic on the effects of CuO on the fish gill. There is need to properly document the ecological implications of nanoparticles in the aquatic environment.
format Article
id doaj-art-689295eb43e048718695f8e1fa92ae6f
institution Kabale University
issn 1687-9503
1687-9511
language English
publishDate 2019-01-01
publisher Wiley
record_format Article
series Journal of Nanotechnology
spelling doaj-art-689295eb43e048718695f8e1fa92ae6f2025-02-03T01:03:27ZengWileyJournal of Nanotechnology1687-95031687-95112019-01-01201910.1155/2019/76865977686597Antagonistic Effects of Sublethal Concentrations of Certain Mixtures of Metal Oxide Nanoparticles and the Bulk (Al2O3, CuO, and SiO2) on Gill Histology in Clarias gariepinusAmaeze Henry Nnamdi0Tam-Miette Dawarri Briggs1Oluwaseun Olusola Togunde2Henry Ebele Obanya3Ecotoxicology Unit, Department of Zoology, University of Lagos, Lagos, NigeriaEcotoxicology Unit, Department of Zoology, University of Lagos, Lagos, NigeriaEcotoxicology Unit, Department of Zoology, University of Lagos, Lagos, NigeriaEcotoxicology Unit, Department of Zoology, University of Lagos, Lagos, NigeriaBackground. The effect of nanoparticles (NPs) on aquatic environments is poorly studied. Aim. This study evaluates the toxicity of joint effects of these different metal nanoparticles and their bulk in mixtures (Al2O3, CuO, and SiO2) on fish using histological biomarker. Materials and Methods. The bulk and nano sizes of three salts (Al2O3, CuO, and SiO2) were used. Nanosizes ranged from 25 nm to 100 nm. The juvenile fishes of Clarias gariepinus (mean Length: 12.3 ± 3.5 cm; mean weight: 18.52 ± 6.41 g) were used for the acute and chronic toxicity tests. They were exposed to 7 mg/L each of the bulk and nano sizes of the three metallic oxides either singly or in mixtures for 28 days. The basis for the sublethal concentration was that the 96 hr acute toxicity of the varied sizes of the three metallic oxides was nontoxic up to the concentrations of 100 mg/L with no significant mortality at the highest exposure concentrations. The gills were collected for histopathology. Results. Of the three metal oxide nanoparticles, SiO was the most toxic, with histopathological alteration index (HAI) of 20.0, followed by nano-CuO (HAI, 10.0) and nano-Al2O3 (HAI, 2.0). In single exposure, the gill alterations include high frequencies of erosion of gill lamella (EGL), hypertrophy (HPT), oedema (OD), and necrosis (N). Less damage was observed at the combination of the metal oxide nanoparticles of SiO + Al2O3, SiO + CuO and SiO + Al2O3 + CuO in equal (1 : 1—HAI, 2 and 6; 1 : 1 : 1—HAI, 6) and unequal ratios (1 : 2—HAI, 16 and 6; 2 : 1—HAI, 8 and 6). Similarly, all bulk combinations were also antagonistic except for the equal ratio of bulk CuO (HAI, 20) and bulk Al2O3 (HAI, 10) that gave additive effect with HAI of 32. Conclusion. The joint actions of nano Al2O3 and CuO with SiO produced a low toxic effect, unlike the high toxicity of their single trials; this also indicates that nano Al2O3 and CuO are antagonists. Similarly, among the bulk metal oxides (SiO, Al2O3, and CuO), CuO was the most toxic. Bulk SiO and Al2O3 are antagonistic on the effects of CuO on the fish gill. There is need to properly document the ecological implications of nanoparticles in the aquatic environment.http://dx.doi.org/10.1155/2019/7686597
spellingShingle Amaeze Henry Nnamdi
Tam-Miette Dawarri Briggs
Oluwaseun Olusola Togunde
Henry Ebele Obanya
Antagonistic Effects of Sublethal Concentrations of Certain Mixtures of Metal Oxide Nanoparticles and the Bulk (Al2O3, CuO, and SiO2) on Gill Histology in Clarias gariepinus
Journal of Nanotechnology
title Antagonistic Effects of Sublethal Concentrations of Certain Mixtures of Metal Oxide Nanoparticles and the Bulk (Al2O3, CuO, and SiO2) on Gill Histology in Clarias gariepinus
title_full Antagonistic Effects of Sublethal Concentrations of Certain Mixtures of Metal Oxide Nanoparticles and the Bulk (Al2O3, CuO, and SiO2) on Gill Histology in Clarias gariepinus
title_fullStr Antagonistic Effects of Sublethal Concentrations of Certain Mixtures of Metal Oxide Nanoparticles and the Bulk (Al2O3, CuO, and SiO2) on Gill Histology in Clarias gariepinus
title_full_unstemmed Antagonistic Effects of Sublethal Concentrations of Certain Mixtures of Metal Oxide Nanoparticles and the Bulk (Al2O3, CuO, and SiO2) on Gill Histology in Clarias gariepinus
title_short Antagonistic Effects of Sublethal Concentrations of Certain Mixtures of Metal Oxide Nanoparticles and the Bulk (Al2O3, CuO, and SiO2) on Gill Histology in Clarias gariepinus
title_sort antagonistic effects of sublethal concentrations of certain mixtures of metal oxide nanoparticles and the bulk al2o3 cuo and sio2 on gill histology in clarias gariepinus
url http://dx.doi.org/10.1155/2019/7686597
work_keys_str_mv AT amaezehenrynnamdi antagonisticeffectsofsublethalconcentrationsofcertainmixturesofmetaloxidenanoparticlesandthebulkal2o3cuoandsio2ongillhistologyinclariasgariepinus
AT tammiettedawarribriggs antagonisticeffectsofsublethalconcentrationsofcertainmixturesofmetaloxidenanoparticlesandthebulkal2o3cuoandsio2ongillhistologyinclariasgariepinus
AT oluwaseunolusolatogunde antagonisticeffectsofsublethalconcentrationsofcertainmixturesofmetaloxidenanoparticlesandthebulkal2o3cuoandsio2ongillhistologyinclariasgariepinus
AT henryebeleobanya antagonisticeffectsofsublethalconcentrationsofcertainmixturesofmetaloxidenanoparticlesandthebulkal2o3cuoandsio2ongillhistologyinclariasgariepinus