Non-linear enhancement of ultrafast X-ray diffraction through transient resonances

Abstract Diffraction-before-destruction imaging with ultrashort X-ray pulses can visualize non-equilibrium processes, such as chemical reactions, with sub-femtosecond precision in the native environment. Here, a nanospecimen diffracts a single X-ray flash before it disintegrates. The sample structur...

Full description

Saved in:
Bibliographic Details
Main Authors: Stephan Kuschel, Phay J. Ho, Andre Al Haddad, Felix F. Zimmermann, Leonie Flueckiger, Matthew R. Ware, Joseph Duris, James P. MacArthur, Alberto Lutman, Ming-Fu Lin, Xiang Li, Kazutaka Nakahara, Jeff W. Aldrich, Peter Walter, Linda Young, Christoph Bostedt, Agostino Marinelli, Tais Gorkhover
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-56046-y
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Diffraction-before-destruction imaging with ultrashort X-ray pulses can visualize non-equilibrium processes, such as chemical reactions, with sub-femtosecond precision in the native environment. Here, a nanospecimen diffracts a single X-ray flash before it disintegrates. The sample structure can be reconstructed from the coherent diffraction image (CDI). State-of-the-art X-ray snapshots lack high spatial resolution because of weak diffraction signal. Bleaching effects from photo-ionization significantly restrain image brightness scaling. We find that non-linear transient ion resonances can overcome this barrier if X-ray laser pulses are shorter than in most experiments. We compared snapshots from individual  ≈ 100 nm Xe nanoparticles as a function of pulse duration and incoming X-ray fluence. Our experimental results and Monte Carlo simulations suggest that transient resonances can increase ionic scattering cross sections significantly beyond literature values. This provides a novel avenue towards substantial improvement of the spatial resolution in CDI in combination with sub-femtosecond temporal precision at the nanoscale.
ISSN:2041-1723