Resistance Spot Welding Defect Detection Based on Visual Inspection: Improved Faster R-CNN Model
This paper presents an enhanced Faster R-CNN model for detecting surface defects in resistance welding spots, improving both efficiency and accuracy for body-in-white quality monitoring. Key innovations include using high-confidence anchor boxes from the RPN network to locate welding spots, using th...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-01-01
|
Series: | Machines |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-1702/13/1/33 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents an enhanced Faster R-CNN model for detecting surface defects in resistance welding spots, improving both efficiency and accuracy for body-in-white quality monitoring. Key innovations include using high-confidence anchor boxes from the RPN network to locate welding spots, using the SmoothL1 loss function, and applying Fast R-CNN to classify detected defects. Additionally, a new pruning model is introduced, reducing unnecessary layers and parameters in the neural network, leading to faster processing times without sacrificing accuracy. Tests show that the model achieves over 90% accuracy and recall, processing each image in about 15 ms, meeting industrial requirements for welding spot inspection. |
---|---|
ISSN: | 2075-1702 |