An Optimization to Schedule Train Operations with Phase-Regular Framework for Intercity Rail Lines

The most important operating problem for intercity rail lines, which are characterized with the train operations at rapid speed and high frequency, is to design a service-oriented schedule with the minimum cost. This paper proposes a phase-regular scheduling method which divides a day equally into s...

Full description

Saved in:
Bibliographic Details
Main Authors: Huimin Niu, Minghui Zhang
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2012/549374
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The most important operating problem for intercity rail lines, which are characterized with the train operations at rapid speed and high frequency, is to design a service-oriented schedule with the minimum cost. This paper proposes a phase-regular scheduling method which divides a day equally into several time blocks and applies a regular train-departing interval and the same train length for each period under the period-dependent demand conditions. A nonlinear mixed zero-one programming model, which could accurately calculate the passenger waiting time and the in-train crowded cost, is developed in this study. A hybrid genetic algorithm associated with the layered crossover and mutation operation is carefully designed to solve the proposed model. Finally, the effectiveness of the proposed model and algorithm is illustrated through the application to Hefei-Wuhan intercity rail line in China.
ISSN:1026-0226
1607-887X