Polynomial Reproduction of Vector Subdivision Schemes

We discuss the polynomial reproduction of vector subdivision schemes with general integer dilation m≥2. We first present a simple algebraic condition for polynomial reproduction of such schemes with standard subdivision symbol. We then extend it to general subdivision symbol satisfying certain order...

Full description

Saved in:
Bibliographic Details
Main Authors: Y. F. Shen, D. H. Yuan, S. Z. Yang
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2014/104840
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832567654005604352
author Y. F. Shen
D. H. Yuan
S. Z. Yang
author_facet Y. F. Shen
D. H. Yuan
S. Z. Yang
author_sort Y. F. Shen
collection DOAJ
description We discuss the polynomial reproduction of vector subdivision schemes with general integer dilation m≥2. We first present a simple algebraic condition for polynomial reproduction of such schemes with standard subdivision symbol. We then extend it to general subdivision symbol satisfying certain order of sum rules. We also illustrate our results with several examples. Our results show that such kind of scheme can produce exactly the same scalar polynomial from which the data is sampled by convolving with a finite nonzero sequence of vectors.
format Article
id doaj-art-67eb492f188d46a5a12776371536faa0
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2014-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-67eb492f188d46a5a12776371536faa02025-02-03T01:00:55ZengWileyAbstract and Applied Analysis1085-33751687-04092014-01-01201410.1155/2014/104840104840Polynomial Reproduction of Vector Subdivision SchemesY. F. Shen0D. H. Yuan1S. Z. Yang2Department of Mathematics, Shantou University, Shantou, Guangdong 515063, ChinaDepartment of Mathematics, Hanshan Normal University, Chaozhou, Guangdong 521041, ChinaDepartment of Mathematics, Shantou University, Shantou, Guangdong 515063, ChinaWe discuss the polynomial reproduction of vector subdivision schemes with general integer dilation m≥2. We first present a simple algebraic condition for polynomial reproduction of such schemes with standard subdivision symbol. We then extend it to general subdivision symbol satisfying certain order of sum rules. We also illustrate our results with several examples. Our results show that such kind of scheme can produce exactly the same scalar polynomial from which the data is sampled by convolving with a finite nonzero sequence of vectors.http://dx.doi.org/10.1155/2014/104840
spellingShingle Y. F. Shen
D. H. Yuan
S. Z. Yang
Polynomial Reproduction of Vector Subdivision Schemes
Abstract and Applied Analysis
title Polynomial Reproduction of Vector Subdivision Schemes
title_full Polynomial Reproduction of Vector Subdivision Schemes
title_fullStr Polynomial Reproduction of Vector Subdivision Schemes
title_full_unstemmed Polynomial Reproduction of Vector Subdivision Schemes
title_short Polynomial Reproduction of Vector Subdivision Schemes
title_sort polynomial reproduction of vector subdivision schemes
url http://dx.doi.org/10.1155/2014/104840
work_keys_str_mv AT yfshen polynomialreproductionofvectorsubdivisionschemes
AT dhyuan polynomialreproductionofvectorsubdivisionschemes
AT szyang polynomialreproductionofvectorsubdivisionschemes