Molecular Mechanisms of Alzheimer’s Disease Induced by Amyloid-β and Tau Phosphorylation Along with RhoA Activity: Perspective of RhoA/Rho-Associated Protein Kinase Inhibitors for Neuronal Therapy

Amyloid-β peptide (Aβ) is a critical cause of Alzheimer’s disease (AD). It is generated from amyloid precursor protein (APP) through cleavages by β-secretase and γ-secretase. γ-Secretase, which includes presenilin, is regulated by several stimuli. Tau protein has also been identified as a significan...

Full description

Saved in:
Bibliographic Details
Main Authors: Eun Hee Ahn, Jae-Bong Park
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Cells
Subjects:
Online Access:https://www.mdpi.com/2073-4409/14/2/89
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832588840465858560
author Eun Hee Ahn
Jae-Bong Park
author_facet Eun Hee Ahn
Jae-Bong Park
author_sort Eun Hee Ahn
collection DOAJ
description Amyloid-β peptide (Aβ) is a critical cause of Alzheimer’s disease (AD). It is generated from amyloid precursor protein (APP) through cleavages by β-secretase and γ-secretase. γ-Secretase, which includes presenilin, is regulated by several stimuli. Tau protein has also been identified as a significant factor in AD. In particular, Tau phosphorylation is crucial for neuronal impairment, as phosphorylated Tau detaches from microtubules, leading to the formation of neurofibrillary tangles and the destabilization of the microtubule structure. This instability in microtubules damages axons and dendrites, resulting in neuronal impairment. Notably, Aβ is linked to Tau phosphorylation. Another crucial factor in AD is neuroinflammation, primarily occurring in the microglia. Microglia possess several receptors that bind with Aβ, triggering the expression and release of an inflammatory factor, although their main physiological function is to phagocytose debris and pathogens in the brain. NF-κB activation plays a major role in neuroinflammation. Additionally, the production of reactive oxygen species (ROS) in the microglia contributes to this neuroinflammation. In microglia, superoxide is produced through NADPH oxidase, specifically NOX2. Rho GTPases play an essential role in regulating various cellular processes, including cytoskeletal rearrangement, morphology changes, migration, and transcription. The typical function of Rho GTPases involves regulating actin filament formation. Neurons, with their complex processes and synapse connections, rely on cytoskeletal dynamics for structural support. Other brain cells, such as astrocytes, microglia, and oligodendrocytes, also depend on specific cytoskeletal structures to maintain their unique cellular architectures. Thus, the aberrant regulation of Rho GTPases activity can disrupt actin filaments, leading to altered cell morphology, including changes in neuronal processes and synapses, and potentially contributing to brain diseases such as AD.
format Article
id doaj-art-67e51f8647a84cdf8c27961e381910e2
institution Kabale University
issn 2073-4409
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Cells
spelling doaj-art-67e51f8647a84cdf8c27961e381910e22025-01-24T13:26:38ZengMDPI AGCells2073-44092025-01-011428910.3390/cells14020089Molecular Mechanisms of Alzheimer’s Disease Induced by Amyloid-β and Tau Phosphorylation Along with RhoA Activity: Perspective of RhoA/Rho-Associated Protein Kinase Inhibitors for Neuronal TherapyEun Hee Ahn0Jae-Bong Park1Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of KoreaDepartment of Biochemistry, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of KoreaAmyloid-β peptide (Aβ) is a critical cause of Alzheimer’s disease (AD). It is generated from amyloid precursor protein (APP) through cleavages by β-secretase and γ-secretase. γ-Secretase, which includes presenilin, is regulated by several stimuli. Tau protein has also been identified as a significant factor in AD. In particular, Tau phosphorylation is crucial for neuronal impairment, as phosphorylated Tau detaches from microtubules, leading to the formation of neurofibrillary tangles and the destabilization of the microtubule structure. This instability in microtubules damages axons and dendrites, resulting in neuronal impairment. Notably, Aβ is linked to Tau phosphorylation. Another crucial factor in AD is neuroinflammation, primarily occurring in the microglia. Microglia possess several receptors that bind with Aβ, triggering the expression and release of an inflammatory factor, although their main physiological function is to phagocytose debris and pathogens in the brain. NF-κB activation plays a major role in neuroinflammation. Additionally, the production of reactive oxygen species (ROS) in the microglia contributes to this neuroinflammation. In microglia, superoxide is produced through NADPH oxidase, specifically NOX2. Rho GTPases play an essential role in regulating various cellular processes, including cytoskeletal rearrangement, morphology changes, migration, and transcription. The typical function of Rho GTPases involves regulating actin filament formation. Neurons, with their complex processes and synapse connections, rely on cytoskeletal dynamics for structural support. Other brain cells, such as astrocytes, microglia, and oligodendrocytes, also depend on specific cytoskeletal structures to maintain their unique cellular architectures. Thus, the aberrant regulation of Rho GTPases activity can disrupt actin filaments, leading to altered cell morphology, including changes in neuronal processes and synapses, and potentially contributing to brain diseases such as AD.https://www.mdpi.com/2073-4409/14/2/89Alzheimer’s diseaseamyloid-betatau phosphorylationneuroinflammationRhoA GTPase
spellingShingle Eun Hee Ahn
Jae-Bong Park
Molecular Mechanisms of Alzheimer’s Disease Induced by Amyloid-β and Tau Phosphorylation Along with RhoA Activity: Perspective of RhoA/Rho-Associated Protein Kinase Inhibitors for Neuronal Therapy
Cells
Alzheimer’s disease
amyloid-beta
tau phosphorylation
neuroinflammation
RhoA GTPase
title Molecular Mechanisms of Alzheimer’s Disease Induced by Amyloid-β and Tau Phosphorylation Along with RhoA Activity: Perspective of RhoA/Rho-Associated Protein Kinase Inhibitors for Neuronal Therapy
title_full Molecular Mechanisms of Alzheimer’s Disease Induced by Amyloid-β and Tau Phosphorylation Along with RhoA Activity: Perspective of RhoA/Rho-Associated Protein Kinase Inhibitors for Neuronal Therapy
title_fullStr Molecular Mechanisms of Alzheimer’s Disease Induced by Amyloid-β and Tau Phosphorylation Along with RhoA Activity: Perspective of RhoA/Rho-Associated Protein Kinase Inhibitors for Neuronal Therapy
title_full_unstemmed Molecular Mechanisms of Alzheimer’s Disease Induced by Amyloid-β and Tau Phosphorylation Along with RhoA Activity: Perspective of RhoA/Rho-Associated Protein Kinase Inhibitors for Neuronal Therapy
title_short Molecular Mechanisms of Alzheimer’s Disease Induced by Amyloid-β and Tau Phosphorylation Along with RhoA Activity: Perspective of RhoA/Rho-Associated Protein Kinase Inhibitors for Neuronal Therapy
title_sort molecular mechanisms of alzheimer s disease induced by amyloid β and tau phosphorylation along with rhoa activity perspective of rhoa rho associated protein kinase inhibitors for neuronal therapy
topic Alzheimer’s disease
amyloid-beta
tau phosphorylation
neuroinflammation
RhoA GTPase
url https://www.mdpi.com/2073-4409/14/2/89
work_keys_str_mv AT eunheeahn molecularmechanismsofalzheimersdiseaseinducedbyamyloidbandtauphosphorylationalongwithrhoaactivityperspectiveofrhoarhoassociatedproteinkinaseinhibitorsforneuronaltherapy
AT jaebongpark molecularmechanismsofalzheimersdiseaseinducedbyamyloidbandtauphosphorylationalongwithrhoaactivityperspectiveofrhoarhoassociatedproteinkinaseinhibitorsforneuronaltherapy