A metabolite‐based machine learning approach to diagnose Alzheimer‐type dementia in blood: Results from the European Medical Information Framework for Alzheimer disease biomarker discovery cohort

Abstract Introduction Machine learning (ML) may harbor the potential to capture the metabolic complexity in Alzheimer Disease (AD). Here we set out to test the performance of metabolites in blood to categorize AD when compared to CSF biomarkers. Methods This study analyzed samples from 242 cognitive...

Full description

Saved in:
Bibliographic Details
Main Authors: Daniel Stamate, Min Kim, Petroula Proitsi, Sarah Westwood, Alison Baird, Alejo Nevado‐Holgado, Abdul Hye, Isabelle Bos, Stephanie J.B. Vos, Rik Vandenberghe, Charlotte E. Teunissen, Mara Ten Kate, Philip Scheltens, Silvy Gabel, Karen Meersmans, Olivier Blin, Jill Richardson, Ellen De Roeck, Sebastiaan Engelborghs, Kristel Sleegers, Régis Bordet, Lorena Ramit, Petronella Kettunen, Magda Tsolaki, Frans Verhey, Daniel Alcolea, Alberto Lléo, Gwendoline Peyratout, Mikel Tainta, Peter Johannsen, Yvonne Freund‐Levi, Lutz Frölich, Valerija Dobricic, Giovanni B. Frisoni, José L. Molinuevo, Anders Wallin, Julius Popp, Pablo Martinez‐Lage, Lars Bertram, Kaj Blennow, Henrik Zetterberg, Johannes Streffer, Pieter J. Visser, Simon Lovestone, Cristina Legido‐Quigley
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:Alzheimer’s & Dementia: Translational Research & Clinical Interventions
Subjects:
Online Access:https://doi.org/10.1016/j.trci.2019.11.001
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849688449823539200
author Daniel Stamate
Min Kim
Petroula Proitsi
Sarah Westwood
Alison Baird
Alejo Nevado‐Holgado
Abdul Hye
Isabelle Bos
Stephanie J.B. Vos
Rik Vandenberghe
Charlotte E. Teunissen
Mara Ten Kate
Philip Scheltens
Silvy Gabel
Karen Meersmans
Olivier Blin
Jill Richardson
Ellen De Roeck
Sebastiaan Engelborghs
Kristel Sleegers
Régis Bordet
Lorena Ramit
Petronella Kettunen
Magda Tsolaki
Frans Verhey
Daniel Alcolea
Alberto Lléo
Gwendoline Peyratout
Mikel Tainta
Peter Johannsen
Yvonne Freund‐Levi
Lutz Frölich
Valerija Dobricic
Giovanni B. Frisoni
José L. Molinuevo
Anders Wallin
Julius Popp
Pablo Martinez‐Lage
Lars Bertram
Kaj Blennow
Henrik Zetterberg
Johannes Streffer
Pieter J. Visser
Simon Lovestone
Cristina Legido‐Quigley
author_facet Daniel Stamate
Min Kim
Petroula Proitsi
Sarah Westwood
Alison Baird
Alejo Nevado‐Holgado
Abdul Hye
Isabelle Bos
Stephanie J.B. Vos
Rik Vandenberghe
Charlotte E. Teunissen
Mara Ten Kate
Philip Scheltens
Silvy Gabel
Karen Meersmans
Olivier Blin
Jill Richardson
Ellen De Roeck
Sebastiaan Engelborghs
Kristel Sleegers
Régis Bordet
Lorena Ramit
Petronella Kettunen
Magda Tsolaki
Frans Verhey
Daniel Alcolea
Alberto Lléo
Gwendoline Peyratout
Mikel Tainta
Peter Johannsen
Yvonne Freund‐Levi
Lutz Frölich
Valerija Dobricic
Giovanni B. Frisoni
José L. Molinuevo
Anders Wallin
Julius Popp
Pablo Martinez‐Lage
Lars Bertram
Kaj Blennow
Henrik Zetterberg
Johannes Streffer
Pieter J. Visser
Simon Lovestone
Cristina Legido‐Quigley
author_sort Daniel Stamate
collection DOAJ
description Abstract Introduction Machine learning (ML) may harbor the potential to capture the metabolic complexity in Alzheimer Disease (AD). Here we set out to test the performance of metabolites in blood to categorize AD when compared to CSF biomarkers. Methods This study analyzed samples from 242 cognitively normal (CN) people and 115 with AD‐type dementia utilizing plasma metabolites (n = 883). Deep Learning (DL), Extreme Gradient Boosting (XGBoost) and Random Forest (RF) were used to differentiate AD from CN. These models were internally validated using Nested Cross Validation (NCV). Results On the test data, DL produced the AUC of 0.85 (0.80–0.89), XGBoost produced 0.88 (0.86–0.89) and RF produced 0.85 (0.83–0.87). By comparison, CSF measures of amyloid, p‐tau and t‐tau (together with age and gender) produced with XGBoost the AUC values of 0.78, 0.83 and 0.87, respectively. Discussion This study showed that plasma metabolites have the potential to match the AUC of well‐established AD CSF biomarkers in a relatively small cohort. Further studies in independent cohorts are needed to validate whether this specific panel of blood metabolites can separate AD from controls, and how specific it is for AD as compared with other neurodegenerative disorders.
format Article
id doaj-art-677a8b0e0beb49259e23bfd0e83c6fcc
institution DOAJ
issn 2352-8737
language English
publishDate 2019-01-01
publisher Wiley
record_format Article
series Alzheimer’s & Dementia: Translational Research & Clinical Interventions
spelling doaj-art-677a8b0e0beb49259e23bfd0e83c6fcc2025-08-20T03:22:00ZengWileyAlzheimer’s & Dementia: Translational Research & Clinical Interventions2352-87372019-01-015193393810.1016/j.trci.2019.11.001A metabolite‐based machine learning approach to diagnose Alzheimer‐type dementia in blood: Results from the European Medical Information Framework for Alzheimer disease biomarker discovery cohortDaniel Stamate0Min Kim1Petroula Proitsi2Sarah Westwood3Alison Baird4Alejo Nevado‐Holgado5Abdul Hye6Isabelle Bos7Stephanie J.B. Vos8Rik Vandenberghe9Charlotte E. Teunissen10Mara Ten Kate11Philip Scheltens12Silvy Gabel13Karen Meersmans14Olivier Blin15Jill Richardson16Ellen De Roeck17Sebastiaan Engelborghs18Kristel Sleegers19Régis Bordet20Lorena Ramit21Petronella Kettunen22Magda Tsolaki23Frans Verhey24Daniel Alcolea25Alberto Lléo26Gwendoline Peyratout27Mikel Tainta28Peter Johannsen29Yvonne Freund‐Levi30Lutz Frölich31Valerija Dobricic32Giovanni B. Frisoni33José L. Molinuevo34Anders Wallin35Julius Popp36Pablo Martinez‐Lage37Lars Bertram38Kaj Blennow39Henrik Zetterberg40Johannes Streffer41Pieter J. Visser42Simon Lovestone43Cristina Legido‐Quigley44Division of Population Health, Health Services Research and Primary CareUniversity of ManchesterManchesterUKSteno Diabetes Center CopenhagenGentofteDenmarkInstitute of Psychiatry, Psychology and NeuroscienceMaurice Wohl Clinical Neuroscience Institute, King's College LondonLondonUKDepartment of PsychiatryUniversity of OxfordOxfordUKDepartment of PsychiatryUniversity of OxfordOxfordUKDepartment of PsychiatryUniversity of OxfordOxfordUKInstitute of Psychiatry, Psychology and NeuroscienceMaurice Wohl Clinical Neuroscience Institute, King's College LondonLondonUKDepartment of Psychiatry and NeuropsychologySchool for Mental Health and NeuroscienceAlzheimer Centrum LimburgMaastricht UniversityMaastrichtthe NetherlandsDepartment of Psychiatry and NeuropsychologySchool for Mental Health and NeuroscienceAlzheimer Centrum LimburgMaastricht UniversityMaastrichtthe NetherlandsDepartment of NeurologyAlzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMCAmsterdamthe NetherlandsDepartment of Radiology and Nuclear MedicineVU University Medical CenterAmsterdamthe NetherlandsDepartment of NeurologyAlzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMCAmsterdamthe NetherlandsDepartment of NeurologyAlzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMCAmsterdamthe NetherlandsDepartment of Clinical ChemistryNeurochemistry Laboratory, Amsterdam Neuroscience, Amsterdam University Medical CentersVrije Universiteitthe NetherlandsUniversity Hospital LeuvenLeuvenBelgiumAIX Marseille University, INS, Ap‐hmMarseilleFranceNeurosciences Therapeutic Area GlaxoSmithKline R&DStevenageUKFaculty of Psychology & Educational Sciences VrijeUniversiteit Brussel (VUB)BrusselsBelgiumReference Center for Biological Markers of Dementia (BIODEM), University of AntwerpAntwerpBelgiumInstitute Born‐Bunge, University of AntwerpAntwerpBelgiumUniversity of Lille, Inserm, CHU LilleLilleFranceAlzheimer's Disease & Other Cognitive Disorders UnitHospital Clínic‐IDIBAPSBarcelonaSpainInstitute of Neuroscience and Physiology, Sahlgrenska Academy at University of GothenburgGothenburgSweden1st Department of NeurologyAHEPA University HospitalMakedoniaThessalonikiGreeceDepartment of Psychiatry and NeuropsychologySchool for Mental Health and NeuroscienceAlzheimer Centrum LimburgMaastricht UniversityMaastrichtthe NetherlandsMemory Unit Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpainMemory Unit Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpainUniversity Hospital of LausanneLausanneSwitzerlandCenter for Research and Advanced Therapies, Fundacion CITA‐alzheimer FundazioaDonostia/San SebastianSpainDanish Dementia Research CentreRigshospitalet, Copenhagen University HospitalCopenhagenDenmarkInstitute of Psychiatry, Psychology and NeuroscienceMaurice Wohl Clinical Neuroscience Institute, King's College LondonLondonUKDepartment of Geriatric PsychiatryZentralinstitut für Seelische Gesundheit, University of HeidelbergMannheimGermanyLübeck Interdisciplinary Platform for Genome AnalyticsInstitutes of Neurogenetics and Cardiogenetics, University of LübeckLübeckGermanyUniversity of GenevaGenevaSwitzerlandUniversity of Lille, Inserm, CHU LilleLilleFranceInstitute of Neuroscience and Physiology, Sahlgrenska Academy at the University of GothenburgGothenburgSwedenUniversity Hospital of LausanneLausanneSwitzerlandCenter for Research and Advanced Therapies, Fundacion CITA‐alzheimer FundazioaDonostia/San SebastianSpainLübeck Interdisciplinary Platform for Genome AnalyticsInstitutes of Neurogenetics and Cardiogenetics, University of LübeckLübeckGermanyDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, University of GothenburgMölndalSwedenDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, University of GothenburgMölndalSwedenReference Center for Biological Markers of Dementia (BIODEM), Institute Born‐Bunge, University of AntwerpAntwerpBelgiumDepartment of Psychiatry and NeuropsychologySchool for Mental Health and NeuroscienceAlzheimer Centrum LimburgMaastricht UniversityMaastrichtthe NetherlandsDepartment of PsychiatryUniversity of OxfordOxfordUKSteno Diabetes Center CopenhagenGentofteDenmarkAbstract Introduction Machine learning (ML) may harbor the potential to capture the metabolic complexity in Alzheimer Disease (AD). Here we set out to test the performance of metabolites in blood to categorize AD when compared to CSF biomarkers. Methods This study analyzed samples from 242 cognitively normal (CN) people and 115 with AD‐type dementia utilizing plasma metabolites (n = 883). Deep Learning (DL), Extreme Gradient Boosting (XGBoost) and Random Forest (RF) were used to differentiate AD from CN. These models were internally validated using Nested Cross Validation (NCV). Results On the test data, DL produced the AUC of 0.85 (0.80–0.89), XGBoost produced 0.88 (0.86–0.89) and RF produced 0.85 (0.83–0.87). By comparison, CSF measures of amyloid, p‐tau and t‐tau (together with age and gender) produced with XGBoost the AUC values of 0.78, 0.83 and 0.87, respectively. Discussion This study showed that plasma metabolites have the potential to match the AUC of well‐established AD CSF biomarkers in a relatively small cohort. Further studies in independent cohorts are needed to validate whether this specific panel of blood metabolites can separate AD from controls, and how specific it is for AD as compared with other neurodegenerative disorders.https://doi.org/10.1016/j.trci.2019.11.001EMIF‐ADAlzheimer's diseaseMetabolomicsBiomarkersMachine‐Learning
spellingShingle Daniel Stamate
Min Kim
Petroula Proitsi
Sarah Westwood
Alison Baird
Alejo Nevado‐Holgado
Abdul Hye
Isabelle Bos
Stephanie J.B. Vos
Rik Vandenberghe
Charlotte E. Teunissen
Mara Ten Kate
Philip Scheltens
Silvy Gabel
Karen Meersmans
Olivier Blin
Jill Richardson
Ellen De Roeck
Sebastiaan Engelborghs
Kristel Sleegers
Régis Bordet
Lorena Ramit
Petronella Kettunen
Magda Tsolaki
Frans Verhey
Daniel Alcolea
Alberto Lléo
Gwendoline Peyratout
Mikel Tainta
Peter Johannsen
Yvonne Freund‐Levi
Lutz Frölich
Valerija Dobricic
Giovanni B. Frisoni
José L. Molinuevo
Anders Wallin
Julius Popp
Pablo Martinez‐Lage
Lars Bertram
Kaj Blennow
Henrik Zetterberg
Johannes Streffer
Pieter J. Visser
Simon Lovestone
Cristina Legido‐Quigley
A metabolite‐based machine learning approach to diagnose Alzheimer‐type dementia in blood: Results from the European Medical Information Framework for Alzheimer disease biomarker discovery cohort
Alzheimer’s & Dementia: Translational Research & Clinical Interventions
EMIF‐AD
Alzheimer's disease
Metabolomics
Biomarkers
Machine‐Learning
title A metabolite‐based machine learning approach to diagnose Alzheimer‐type dementia in blood: Results from the European Medical Information Framework for Alzheimer disease biomarker discovery cohort
title_full A metabolite‐based machine learning approach to diagnose Alzheimer‐type dementia in blood: Results from the European Medical Information Framework for Alzheimer disease biomarker discovery cohort
title_fullStr A metabolite‐based machine learning approach to diagnose Alzheimer‐type dementia in blood: Results from the European Medical Information Framework for Alzheimer disease biomarker discovery cohort
title_full_unstemmed A metabolite‐based machine learning approach to diagnose Alzheimer‐type dementia in blood: Results from the European Medical Information Framework for Alzheimer disease biomarker discovery cohort
title_short A metabolite‐based machine learning approach to diagnose Alzheimer‐type dementia in blood: Results from the European Medical Information Framework for Alzheimer disease biomarker discovery cohort
title_sort metabolite based machine learning approach to diagnose alzheimer type dementia in blood results from the european medical information framework for alzheimer disease biomarker discovery cohort
topic EMIF‐AD
Alzheimer's disease
Metabolomics
Biomarkers
Machine‐Learning
url https://doi.org/10.1016/j.trci.2019.11.001
work_keys_str_mv AT danielstamate ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT minkim ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT petroulaproitsi ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT sarahwestwood ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT alisonbaird ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT alejonevadoholgado ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT abdulhye ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT isabellebos ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT stephaniejbvos ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT rikvandenberghe ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT charlotteeteunissen ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT maratenkate ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT philipscheltens ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT silvygabel ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT karenmeersmans ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT olivierblin ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT jillrichardson ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT ellenderoeck ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT sebastiaanengelborghs ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT kristelsleegers ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT regisbordet ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT lorenaramit ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT petronellakettunen ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT magdatsolaki ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT fransverhey ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT danielalcolea ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT albertolleo ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT gwendolinepeyratout ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT mikeltainta ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT peterjohannsen ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT yvonnefreundlevi ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT lutzfrolich ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT valerijadobricic ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT giovannibfrisoni ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT joselmolinuevo ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT anderswallin ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT juliuspopp ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT pablomartinezlage ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT larsbertram ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT kajblennow ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT henrikzetterberg ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT johannesstreffer ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT pieterjvisser ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT simonlovestone ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT cristinalegidoquigley ametabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT danielstamate metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT minkim metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT petroulaproitsi metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT sarahwestwood metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT alisonbaird metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT alejonevadoholgado metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT abdulhye metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT isabellebos metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT stephaniejbvos metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT rikvandenberghe metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT charlotteeteunissen metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT maratenkate metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT philipscheltens metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT silvygabel metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT karenmeersmans metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT olivierblin metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT jillrichardson metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT ellenderoeck metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT sebastiaanengelborghs metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT kristelsleegers metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT regisbordet metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT lorenaramit metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT petronellakettunen metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT magdatsolaki metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT fransverhey metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT danielalcolea metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT albertolleo metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT gwendolinepeyratout metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT mikeltainta metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT peterjohannsen metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT yvonnefreundlevi metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT lutzfrolich metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT valerijadobricic metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT giovannibfrisoni metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT joselmolinuevo metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT anderswallin metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT juliuspopp metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT pablomartinezlage metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT larsbertram metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT kajblennow metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT henrikzetterberg metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT johannesstreffer metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT pieterjvisser metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT simonlovestone metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort
AT cristinalegidoquigley metabolitebasedmachinelearningapproachtodiagnosealzheimertypedementiainbloodresultsfromtheeuropeanmedicalinformationframeworkforalzheimerdiseasebiomarkerdiscoverycohort