Applications of federated learning in smart cities: recent advances, taxonomy, and open challenges

Federated learning (FL) plays an important role in the development of smart cities. With the evolution of big data and artificial intelligence, issues related to data privacy and protection have emerged, which can be solved by FL. In this paper, the current developments in FL and its applications in...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhaohua Zheng, Yize Zhou, Yilong Sun, Zhang Wang, Boyi Liu, Keqiu Li
Format: Article
Language:English
Published: Taylor & Francis Group 2022-12-01
Series:Connection Science
Subjects:
Online Access:http://dx.doi.org/10.1080/09540091.2021.1936455
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Federated learning (FL) plays an important role in the development of smart cities. With the evolution of big data and artificial intelligence, issues related to data privacy and protection have emerged, which can be solved by FL. In this paper, the current developments in FL and its applications in various fields are reviewed. With a comprehensive investigation, the latest research on the application of FL is discussed for various fields in smart cities. We explain the current developments in FL in fields, such as the Internet of Things (IoT), transportation, communications, finance, and medicine. First, we introduce the background, definition, and key technologies of FL. Then, we review key applications and the latest results. Finally, we discuss the future applications and research directions of FL in smart cities.
ISSN:0954-0091
1360-0494