Predicción de contaminantes atmosféricos en Bogotá utilizando Redes LSTM

Esta investigación presenta el desarrollo e implementación de modelos basados en redes LSTM para predecir los niveles de contaminantes atmosféricos en Bogotá, utilizando datos de la estación meteorológica de Las Ferias, parte de la Red de Monitoreo de Calidad del Aire de Bogotá (RMCAB). Se recopila...

Full description

Saved in:
Bibliographic Details
Main Author: Christian Alejandro Sarmiento Sánchez
Format: Article
Language:Spanish
Published: Universidad Tecnológica Nacional, Facultad Regional La Plata 2024-12-01
Series:Ingenio Tecnológico
Subjects:
Online Access:https://190.114.209.46/index.php/ingenio/article/view/108
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Esta investigación presenta el desarrollo e implementación de modelos basados en redes LSTM para predecir los niveles de contaminantes atmosféricos en Bogotá, utilizando datos de la estación meteorológica de Las Ferias, parte de la Red de Monitoreo de Calidad del Aire de Bogotá (RMCAB). Se recopilaron y analizaron datos entre 2021 y 2023, sumando más de 29,200 registros, que fueron empleados para entrenar, validar y probar los modelos. Se desarrollaron dos enfoques: el primero, un modelo univariable de predicción single-step para contaminantes específicos como PM10, PM2.5, CO y NO2, y el segundo, un modelo multivariable que integra variables meteorológicas como la dirección y velocidad del viento, temperatura, humedad, presión y precipitación. El rendimiento de ambos enfoques se evaluó utilizando el error cuadrático medio (RMSE), comparando las predicciones con mediciones reales. Los resultados muestran que el modelo multivariable ofreció mejores predicciones debido a la inclusión de factores atmosféricos adicionales, destacando su capacidad para mejorar la precisión en las estimaciones de la calidad del aire. Esto resalta la relevancia de considerar múltiples variables en la predicción de contaminantes, especialmente en contextos urbanos donde las interacciones entre factores ambientales son complejas.
ISSN:2618-4931