Scalar Field Kantowski–Sachs Solutions in Teleparallel <i>F</i>(<i>T</i>) Gravity

In this paper, we investigate time-dependent Kantowski–Sachs spherically symmetric teleparallel <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>T</m...

Full description

Saved in:
Bibliographic Details
Main Author: Alexandre Landry
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Universe
Subjects:
Online Access:https://www.mdpi.com/2218-1997/11/1/26
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832587357168074752
author Alexandre Landry
author_facet Alexandre Landry
author_sort Alexandre Landry
collection DOAJ
description In this paper, we investigate time-dependent Kantowski–Sachs spherically symmetric teleparallel <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></semantics></math></inline-formula> gravity with a scalar field source. We begin by setting the exact field equations to be solved and solve conservation laws for possible scalar field potential, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mfenced open="(" close=")"><mi>ϕ</mi></mfenced></mrow></semantics></math></inline-formula>, solutions. Then, we find new non-trivial teleparallel <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></semantics></math></inline-formula> solutions by using power-law and exponential ansatz for each potential case arising from conservation laws, such as linear, quadratic, or logarithmic, to name a few. We find a general formula allowing us to compute all possible new teleparallel <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></semantics></math></inline-formula> solutions applicable for any scalar field potential and ansatz. Then, we apply this formula and find a large number of exact and approximate new teleparallel <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></semantics></math></inline-formula> solutions for several types of cases. Some new <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></semantics></math></inline-formula> solution classes may be relevant for future cosmological applications, especially concerning dark matter, dark energy quintessence, phantom energy leading to the Big Rip event, and quintom models of physical processes.
format Article
id doaj-art-66ca79e4bc0748fba0a2e804996a5852
institution Kabale University
issn 2218-1997
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Universe
spelling doaj-art-66ca79e4bc0748fba0a2e804996a58522025-01-24T13:51:31ZengMDPI AGUniverse2218-19972025-01-011112610.3390/universe11010026Scalar Field Kantowski–Sachs Solutions in Teleparallel <i>F</i>(<i>T</i>) GravityAlexandre Landry0Department of Mathematics and Statistics, Dalhousie University, Halifax, NS B3H 3J5, CanadaIn this paper, we investigate time-dependent Kantowski–Sachs spherically symmetric teleparallel <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></semantics></math></inline-formula> gravity with a scalar field source. We begin by setting the exact field equations to be solved and solve conservation laws for possible scalar field potential, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mfenced open="(" close=")"><mi>ϕ</mi></mfenced></mrow></semantics></math></inline-formula>, solutions. Then, we find new non-trivial teleparallel <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></semantics></math></inline-formula> solutions by using power-law and exponential ansatz for each potential case arising from conservation laws, such as linear, quadratic, or logarithmic, to name a few. We find a general formula allowing us to compute all possible new teleparallel <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></semantics></math></inline-formula> solutions applicable for any scalar field potential and ansatz. Then, we apply this formula and find a large number of exact and approximate new teleparallel <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></semantics></math></inline-formula> solutions for several types of cases. Some new <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></semantics></math></inline-formula> solution classes may be relevant for future cosmological applications, especially concerning dark matter, dark energy quintessence, phantom energy leading to the Big Rip event, and quintom models of physical processes.https://www.mdpi.com/2218-1997/11/1/26teleparallel gravityfield equationsKantowski–Sachs spacetimesscalar field source solutionsframe-based approachtime-dependent spacetimes
spellingShingle Alexandre Landry
Scalar Field Kantowski–Sachs Solutions in Teleparallel <i>F</i>(<i>T</i>) Gravity
Universe
teleparallel gravity
field equations
Kantowski–Sachs spacetimes
scalar field source solutions
frame-based approach
time-dependent spacetimes
title Scalar Field Kantowski–Sachs Solutions in Teleparallel <i>F</i>(<i>T</i>) Gravity
title_full Scalar Field Kantowski–Sachs Solutions in Teleparallel <i>F</i>(<i>T</i>) Gravity
title_fullStr Scalar Field Kantowski–Sachs Solutions in Teleparallel <i>F</i>(<i>T</i>) Gravity
title_full_unstemmed Scalar Field Kantowski–Sachs Solutions in Teleparallel <i>F</i>(<i>T</i>) Gravity
title_short Scalar Field Kantowski–Sachs Solutions in Teleparallel <i>F</i>(<i>T</i>) Gravity
title_sort scalar field kantowski sachs solutions in teleparallel i f i i t i gravity
topic teleparallel gravity
field equations
Kantowski–Sachs spacetimes
scalar field source solutions
frame-based approach
time-dependent spacetimes
url https://www.mdpi.com/2218-1997/11/1/26
work_keys_str_mv AT alexandrelandry scalarfieldkantowskisachssolutionsinteleparallelifiitigravity