The MAJORANA DEMONSTRATOR Neutrinoless Double-Beta Decay Experiment
The Majorana Demonstrator will search for the neutrinoless double-beta (ββ0ν) decay of the isotope Ge with a mixed array of enriched and natural germanium detectors. The observation of this rare decay would indicate that the neutrino is its own antiparticle, demonstrate that lepton number is not con...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-01-01
|
Series: | Advances in High Energy Physics |
Online Access: | http://dx.doi.org/10.1155/2014/365432 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Majorana Demonstrator will search for the neutrinoless double-beta (ββ0ν) decay of the isotope Ge with a mixed array of enriched and natural germanium detectors. The observation of this rare decay would indicate that the neutrino is its own antiparticle, demonstrate that lepton number is not conserved, and provide information on the absolute mass scale of the neutrino. The Demonstrator is being assembled at the 4850-foot level of the Sanford Underground Research Facility in Lead, South Dakota. The array will be situated in a low-background environment and surrounded by passive and active shielding. Here we describe the science goals of the Demonstrator and the details of its design. |
---|---|
ISSN: | 1687-7357 1687-7365 |