An Extension of the Carathéodory Differentiability to Set-Valued Maps

This paper uses the generalization of the Hukuhara difference for compact convex set to extend the classical notions of Carathéodory differentiability to multifunctions (set-valued maps). Using the Hukuhara difference and affine multifunctions as a local approximation, we introduce the notion of CH-...

Full description

Saved in:
Bibliographic Details
Main Authors: Pedro Hurtado, Alexander Leones, M. Martelo, J. B. Moreno
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2021/5529796
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832550072183685120
author Pedro Hurtado
Alexander Leones
M. Martelo
J. B. Moreno
author_facet Pedro Hurtado
Alexander Leones
M. Martelo
J. B. Moreno
author_sort Pedro Hurtado
collection DOAJ
description This paper uses the generalization of the Hukuhara difference for compact convex set to extend the classical notions of Carathéodory differentiability to multifunctions (set-valued maps). Using the Hukuhara difference and affine multifunctions as a local approximation, we introduce the notion of CH-differentiability for multifunctions. Finally, we tackle the study of the relation among the Fréchet differentiability, Hukuhara differentiability, and CH-differentiability.
format Article
id doaj-art-6665bcd86e2d4572a3d67fed4e2f0447
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2021-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-6665bcd86e2d4572a3d67fed4e2f04472025-02-03T06:07:43ZengWileyAbstract and Applied Analysis1085-33751687-04092021-01-01202110.1155/2021/55297965529796An Extension of the Carathéodory Differentiability to Set-Valued MapsPedro Hurtado0Alexander Leones1M. Martelo2J. B. Moreno3Facultad de Ingenierías, Corporación Universitaria Remington, Calle 51, N 51-27 Medellín-Antioquia, ColombiaFacultad de Ingenierías, Corporación Universitaria Remington, Calle 51, N 51-27 Medellín-Antioquia, ColombiaProgram of Mathematics, Universidade Federal Fluminense, Niteroi, BrazilFacultad de Ingenierías, Corporación Universitaria Remington, Calle 51, N 51-27 Medellín-Antioquia, ColombiaThis paper uses the generalization of the Hukuhara difference for compact convex set to extend the classical notions of Carathéodory differentiability to multifunctions (set-valued maps). Using the Hukuhara difference and affine multifunctions as a local approximation, we introduce the notion of CH-differentiability for multifunctions. Finally, we tackle the study of the relation among the Fréchet differentiability, Hukuhara differentiability, and CH-differentiability.http://dx.doi.org/10.1155/2021/5529796
spellingShingle Pedro Hurtado
Alexander Leones
M. Martelo
J. B. Moreno
An Extension of the Carathéodory Differentiability to Set-Valued Maps
Abstract and Applied Analysis
title An Extension of the Carathéodory Differentiability to Set-Valued Maps
title_full An Extension of the Carathéodory Differentiability to Set-Valued Maps
title_fullStr An Extension of the Carathéodory Differentiability to Set-Valued Maps
title_full_unstemmed An Extension of the Carathéodory Differentiability to Set-Valued Maps
title_short An Extension of the Carathéodory Differentiability to Set-Valued Maps
title_sort extension of the caratheodory differentiability to set valued maps
url http://dx.doi.org/10.1155/2021/5529796
work_keys_str_mv AT pedrohurtado anextensionofthecaratheodorydifferentiabilitytosetvaluedmaps
AT alexanderleones anextensionofthecaratheodorydifferentiabilitytosetvaluedmaps
AT mmartelo anextensionofthecaratheodorydifferentiabilitytosetvaluedmaps
AT jbmoreno anextensionofthecaratheodorydifferentiabilitytosetvaluedmaps
AT pedrohurtado extensionofthecaratheodorydifferentiabilitytosetvaluedmaps
AT alexanderleones extensionofthecaratheodorydifferentiabilitytosetvaluedmaps
AT mmartelo extensionofthecaratheodorydifferentiabilitytosetvaluedmaps
AT jbmoreno extensionofthecaratheodorydifferentiabilitytosetvaluedmaps