A Real-Time End-to-End Framework with a Stacked Model Using Ultrasound Video for Cardiac Septal Defect Decision-Making

Echocardiography is the gold standard for the comprehensive diagnosis of cardiac septal defects (CSDs). Currently, echocardiography diagnosis is primarily based on expert observation, which is laborious and time-consuming. With digitization, deep learning (DL) can be used to improve the efficiency o...

Full description

Saved in:
Bibliographic Details
Main Authors: Siti Nurmaini, Ria Nova, Ade Iriani Sapitri, Muhammad Naufal Rachmatullah, Bambang Tutuko, Firdaus Firdaus, Annisa Darmawahyuni, Anggun Islami, Satria Mandala, Radiyati Umi Partan, Akhiar Wista Arum, Rio Bastian
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Journal of Imaging
Subjects:
Online Access:https://www.mdpi.com/2313-433X/10/11/280
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832593472795705344
author Siti Nurmaini
Ria Nova
Ade Iriani Sapitri
Muhammad Naufal Rachmatullah
Bambang Tutuko
Firdaus Firdaus
Annisa Darmawahyuni
Anggun Islami
Satria Mandala
Radiyati Umi Partan
Akhiar Wista Arum
Rio Bastian
author_facet Siti Nurmaini
Ria Nova
Ade Iriani Sapitri
Muhammad Naufal Rachmatullah
Bambang Tutuko
Firdaus Firdaus
Annisa Darmawahyuni
Anggun Islami
Satria Mandala
Radiyati Umi Partan
Akhiar Wista Arum
Rio Bastian
author_sort Siti Nurmaini
collection DOAJ
description Echocardiography is the gold standard for the comprehensive diagnosis of cardiac septal defects (CSDs). Currently, echocardiography diagnosis is primarily based on expert observation, which is laborious and time-consuming. With digitization, deep learning (DL) can be used to improve the efficiency of the diagnosis. This study presents a real-time end-to-end framework tailored for pediatric ultrasound video analysis for CSD decision-making. The framework employs an advanced real-time architecture based on You Only Look Once (Yolo) techniques for CSD decision-making with high accuracy. Leveraging the state of the art with the Yolov8l (large) architecture, the proposed model achieves a robust performance in real-time processes. It can be observed that the experiment yielded a mean average precision (mAP) exceeding 89%, indicating the framework’s effectiveness in accurately diagnosing CSDs from ultrasound (US) videos. The Yolov8l model exhibits precise performance in the real-time testing of pediatric patients from Mohammad Hoesin General Hospital in Palembang, Indonesia. Based on the results of the proposed model using 222 US videos, it exhibits 95.86% accuracy, 96.82% sensitivity, and 98.74% specificity. During real-time testing in the hospital, the model exhibits a 97.17% accuracy, 95.80% sensitivity, and 98.15% specificity; only 3 out of the 53 US videos in the real-time process were diagnosed incorrectly. This comprehensive approach holds promise for enhancing clinical decision-making and improving patient outcomes in pediatric cardiology.
format Article
id doaj-art-65f1c43ef0564944b99947a313bddcba
institution Kabale University
issn 2313-433X
language English
publishDate 2024-11-01
publisher MDPI AG
record_format Article
series Journal of Imaging
spelling doaj-art-65f1c43ef0564944b99947a313bddcba2025-01-20T13:12:28ZengMDPI AGJournal of Imaging2313-433X2024-11-01101128010.3390/jimaging10110280A Real-Time End-to-End Framework with a Stacked Model Using Ultrasound Video for Cardiac Septal Defect Decision-MakingSiti Nurmaini0Ria Nova1Ade Iriani Sapitri2Muhammad Naufal Rachmatullah3Bambang Tutuko4Firdaus Firdaus5Annisa Darmawahyuni6Anggun Islami7Satria Mandala8Radiyati Umi Partan9Akhiar Wista Arum10Rio Bastian11Intelligent System Research Group, Universitas Sriwijaya, Palembang 30139, IndonesiaDepartment of Pediatric, Cardiology Division, Dr. Mohammad Hoesin Hospital, Palembang 30126, IndonesiaIntelligent System Research Group, Universitas Sriwijaya, Palembang 30139, IndonesiaIntelligent System Research Group, Universitas Sriwijaya, Palembang 30139, IndonesiaIntelligent System Research Group, Universitas Sriwijaya, Palembang 30139, IndonesiaIntelligent System Research Group, Universitas Sriwijaya, Palembang 30139, IndonesiaIntelligent System Research Group, Universitas Sriwijaya, Palembang 30139, IndonesiaIntelligent System Research Group, Universitas Sriwijaya, Palembang 30139, IndonesiaHuman Centric (HUMIC) Engineering, Telkom University, Bandung 40257, IndonesiaDepartment of Internal Medicine, Dr. Mohammad Hoesin Hospital, Palembang 30126, IndonesiaIntelligent System Research Group, Universitas Sriwijaya, Palembang 30139, IndonesiaIntelligent System Research Group, Universitas Sriwijaya, Palembang 30139, IndonesiaEchocardiography is the gold standard for the comprehensive diagnosis of cardiac septal defects (CSDs). Currently, echocardiography diagnosis is primarily based on expert observation, which is laborious and time-consuming. With digitization, deep learning (DL) can be used to improve the efficiency of the diagnosis. This study presents a real-time end-to-end framework tailored for pediatric ultrasound video analysis for CSD decision-making. The framework employs an advanced real-time architecture based on You Only Look Once (Yolo) techniques for CSD decision-making with high accuracy. Leveraging the state of the art with the Yolov8l (large) architecture, the proposed model achieves a robust performance in real-time processes. It can be observed that the experiment yielded a mean average precision (mAP) exceeding 89%, indicating the framework’s effectiveness in accurately diagnosing CSDs from ultrasound (US) videos. The Yolov8l model exhibits precise performance in the real-time testing of pediatric patients from Mohammad Hoesin General Hospital in Palembang, Indonesia. Based on the results of the proposed model using 222 US videos, it exhibits 95.86% accuracy, 96.82% sensitivity, and 98.74% specificity. During real-time testing in the hospital, the model exhibits a 97.17% accuracy, 95.80% sensitivity, and 98.15% specificity; only 3 out of the 53 US videos in the real-time process were diagnosed incorrectly. This comprehensive approach holds promise for enhancing clinical decision-making and improving patient outcomes in pediatric cardiology.https://www.mdpi.com/2313-433X/10/11/280pediatriccardiac defectYoloend-to-end
spellingShingle Siti Nurmaini
Ria Nova
Ade Iriani Sapitri
Muhammad Naufal Rachmatullah
Bambang Tutuko
Firdaus Firdaus
Annisa Darmawahyuni
Anggun Islami
Satria Mandala
Radiyati Umi Partan
Akhiar Wista Arum
Rio Bastian
A Real-Time End-to-End Framework with a Stacked Model Using Ultrasound Video for Cardiac Septal Defect Decision-Making
Journal of Imaging
pediatric
cardiac defect
Yolo
end-to-end
title A Real-Time End-to-End Framework with a Stacked Model Using Ultrasound Video for Cardiac Septal Defect Decision-Making
title_full A Real-Time End-to-End Framework with a Stacked Model Using Ultrasound Video for Cardiac Septal Defect Decision-Making
title_fullStr A Real-Time End-to-End Framework with a Stacked Model Using Ultrasound Video for Cardiac Septal Defect Decision-Making
title_full_unstemmed A Real-Time End-to-End Framework with a Stacked Model Using Ultrasound Video for Cardiac Septal Defect Decision-Making
title_short A Real-Time End-to-End Framework with a Stacked Model Using Ultrasound Video for Cardiac Septal Defect Decision-Making
title_sort real time end to end framework with a stacked model using ultrasound video for cardiac septal defect decision making
topic pediatric
cardiac defect
Yolo
end-to-end
url https://www.mdpi.com/2313-433X/10/11/280
work_keys_str_mv AT sitinurmaini arealtimeendtoendframeworkwithastackedmodelusingultrasoundvideoforcardiacseptaldefectdecisionmaking
AT rianova arealtimeendtoendframeworkwithastackedmodelusingultrasoundvideoforcardiacseptaldefectdecisionmaking
AT adeirianisapitri arealtimeendtoendframeworkwithastackedmodelusingultrasoundvideoforcardiacseptaldefectdecisionmaking
AT muhammadnaufalrachmatullah arealtimeendtoendframeworkwithastackedmodelusingultrasoundvideoforcardiacseptaldefectdecisionmaking
AT bambangtutuko arealtimeendtoendframeworkwithastackedmodelusingultrasoundvideoforcardiacseptaldefectdecisionmaking
AT firdausfirdaus arealtimeendtoendframeworkwithastackedmodelusingultrasoundvideoforcardiacseptaldefectdecisionmaking
AT annisadarmawahyuni arealtimeendtoendframeworkwithastackedmodelusingultrasoundvideoforcardiacseptaldefectdecisionmaking
AT anggunislami arealtimeendtoendframeworkwithastackedmodelusingultrasoundvideoforcardiacseptaldefectdecisionmaking
AT satriamandala arealtimeendtoendframeworkwithastackedmodelusingultrasoundvideoforcardiacseptaldefectdecisionmaking
AT radiyatiumipartan arealtimeendtoendframeworkwithastackedmodelusingultrasoundvideoforcardiacseptaldefectdecisionmaking
AT akhiarwistaarum arealtimeendtoendframeworkwithastackedmodelusingultrasoundvideoforcardiacseptaldefectdecisionmaking
AT riobastian arealtimeendtoendframeworkwithastackedmodelusingultrasoundvideoforcardiacseptaldefectdecisionmaking
AT sitinurmaini realtimeendtoendframeworkwithastackedmodelusingultrasoundvideoforcardiacseptaldefectdecisionmaking
AT rianova realtimeendtoendframeworkwithastackedmodelusingultrasoundvideoforcardiacseptaldefectdecisionmaking
AT adeirianisapitri realtimeendtoendframeworkwithastackedmodelusingultrasoundvideoforcardiacseptaldefectdecisionmaking
AT muhammadnaufalrachmatullah realtimeendtoendframeworkwithastackedmodelusingultrasoundvideoforcardiacseptaldefectdecisionmaking
AT bambangtutuko realtimeendtoendframeworkwithastackedmodelusingultrasoundvideoforcardiacseptaldefectdecisionmaking
AT firdausfirdaus realtimeendtoendframeworkwithastackedmodelusingultrasoundvideoforcardiacseptaldefectdecisionmaking
AT annisadarmawahyuni realtimeendtoendframeworkwithastackedmodelusingultrasoundvideoforcardiacseptaldefectdecisionmaking
AT anggunislami realtimeendtoendframeworkwithastackedmodelusingultrasoundvideoforcardiacseptaldefectdecisionmaking
AT satriamandala realtimeendtoendframeworkwithastackedmodelusingultrasoundvideoforcardiacseptaldefectdecisionmaking
AT radiyatiumipartan realtimeendtoendframeworkwithastackedmodelusingultrasoundvideoforcardiacseptaldefectdecisionmaking
AT akhiarwistaarum realtimeendtoendframeworkwithastackedmodelusingultrasoundvideoforcardiacseptaldefectdecisionmaking
AT riobastian realtimeendtoendframeworkwithastackedmodelusingultrasoundvideoforcardiacseptaldefectdecisionmaking