<i>Botrytis cinerea</i> PMT4 Is Involved in <i>O</i>-Glycosylation, Cell Wall Organization, Membrane Integrity, and Virulence
Proteins found within the fungal cell wall usually contain both <i>N</i>- and <i>O</i>-oligosaccharides. <i>N</i>-glycosylation is the process where these oligosaccharides (hereinafter: glycans) are attached to asparagine residues, while in <i>O</i>-gl...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-01-01
|
Series: | Journal of Fungi |
Subjects: | |
Online Access: | https://www.mdpi.com/2309-608X/11/1/71 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Proteins found within the fungal cell wall usually contain both <i>N</i>- and <i>O</i>-oligosaccharides. <i>N</i>-glycosylation is the process where these oligosaccharides (hereinafter: glycans) are attached to asparagine residues, while in <i>O</i>-glycosylation the glycans are covalently bound to serine or threonine residues. The <i>PMT</i> family is grouped into <i>PMT1</i>, <i>PMT2</i>, and <i>PMT4</i> subfamilies. Using bioinformatics analysis within the <i>Botrytis cinerea</i> genome database, an ortholog to <i>Saccharomyces cerevisiae</i> Pmt4 and other fungal species was identified. The aim of this study was to assess the relevance of the <i>bcpmt4</i> gene in <i>B. cinerea</i> glycosylation. For this purpose, the <i>bcpmt4</i> gene was disrupted by homologous recombination in the B05.10 strain using a hygromycin B resistance cassette. Expression of <i>bcpmt4</i> in <i>S. cerevisiae</i> Δ<i>Scpmt4</i> or Δ<i>Scpmt3</i> null mutants restored glycan levels like those observed in the parental strain. The phenotypic analysis showed that Δ<i>bcpmt4</i> null mutants exhibited significant changes in hyphal cell wall composition, including reduced mannan levels and increased amounts of chitin and glucan. Furthermore, the loss of <i>bcpmt4</i> led to decreased glycosylation of glycoproteins in the <i>B. cinerea</i> cell wall. The null mutant lacking <i>PMT4</i> was hypersensitive to a range of cell wall perturbing agents, antifungal drugs, and high hydrostatic pressure. Thus, in addition to their role in glycosylation, the <i>PMT4</i> is required to virulence, biofilm formation, and membrane integrity. This study adds to our knowledge of the role of the <i>B. cinerea bcpmt4</i> gene, which is involved in glycosylation and cell biology, cell wall formation, and antifungal response. |
---|---|
ISSN: | 2309-608X |