Fine-granularity inference and estimations to network traffic for SDN.
An end-to-end network traffic matrix is significantly helpful for network management and for Software Defined Networks (SDN). However, the end-to-end network traffic matrix's inferences and estimations are a challenging problem. Moreover, attaining the traffic matrix in high-speed networks for...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Public Library of Science (PLoS)
2018-01-01
|
| Series: | PLoS ONE |
| Online Access: | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0194302&type=printable |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | An end-to-end network traffic matrix is significantly helpful for network management and for Software Defined Networks (SDN). However, the end-to-end network traffic matrix's inferences and estimations are a challenging problem. Moreover, attaining the traffic matrix in high-speed networks for SDN is a prohibitive challenge. This paper investigates how to estimate and recover the end-to-end network traffic matrix in fine time granularity from the sampled traffic traces, which is a hard inverse problem. Different from previous methods, the fractal interpolation is used to reconstruct the finer-granularity network traffic. Then, the cubic spline interpolation method is used to obtain the smooth reconstruction values. To attain an accurate the end-to-end network traffic in fine time granularity, we perform a weighted-geometric-average process for two interpolation results that are obtained. The simulation results show that our approaches are feasible and effective. |
|---|---|
| ISSN: | 1932-6203 |