A Bearing Performance Degradation Modeling Method Based on EMD-SVD and Fuzzy Neural Network

Bearing performance degradation assessment has great significance to condition-based maintenance (CBM). A novel degradation modeling method based on EMD-SVD and fuzzy neural network (FNN) was proposed to identify and evaluate the degradation process of bearings in the whole life cycle accurately. Fi...

Full description

Saved in:
Bibliographic Details
Main Authors: Jingbo Gai, Yifan Hu, Junxian Shen
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2019/5738465
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bearing performance degradation assessment has great significance to condition-based maintenance (CBM). A novel degradation modeling method based on EMD-SVD and fuzzy neural network (FNN) was proposed to identify and evaluate the degradation process of bearings in the whole life cycle accurately. Firstly, the vibration signals of bearings in known states were decomposed by empirical mode decomposition (EMD) to obtain the intrinsic mode functions (IMFs) containing feature information. Then, the selected key IMFs which contain the main features were decomposed by singular value decomposition (SVD). And the decomposed results were used as the training samples of FNN. At last, the output results of the tested data were normalized to the health index (HI) through learning and training of FNN, and then the performance degradation degree could be described by the distance between the test sample and the normal one. According to the case study, this modeling method could evaluate the performance degradation of bearings effectively and identify the early fault features accurately. This method also provided an important maintenance strategy for the CBM of bearings.
ISSN:1070-9622
1875-9203