Combining Genes from Multiple Phages for Improved Cell Lysis and DNA Transfer from Escherichia coli to Bacillus subtilis.

The ability to efficiently and reliably transfer genetic circuits between the key synthetic biology chassis, such as Escherichia coli and Bacillus subtilis, constitutes one of the major hurdles of the rational genome engineering. Using lambda Red recombineering we integrated the thermosensitive lamb...

Full description

Saved in:
Bibliographic Details
Main Authors: Mario Juhas, Christine Wong, James W Ajioka
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2016-01-01
Series:PLoS ONE
Online Access:https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0165778&type=printable
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The ability to efficiently and reliably transfer genetic circuits between the key synthetic biology chassis, such as Escherichia coli and Bacillus subtilis, constitutes one of the major hurdles of the rational genome engineering. Using lambda Red recombineering we integrated the thermosensitive lambda repressor and the lysis genes of several bacteriophages into the E. coli chromosome. The lysis of the engineered autolytic cells is inducible by a simple temperature shift. We improved the lysis efficiency by introducing different combinations of lysis genes from bacteriophages lambda, ΦX174 and MS2 under the control of the thermosensitive lambda repressor into the E. coli chromosome. We tested the engineered autolytic cells by transferring plasmid and bacterial artificial chromosome (BAC)-borne genetic circuits from E. coli to B. subtilis. Our engineered system combines benefits of the two main synthetic biology chassis, E. coli and B. subtilis, and allows reliable and efficient transfer of DNA edited in E. coli into B. subtilis.
ISSN:1932-6203