Integral Linear Quadratic Regulator Sliding Mode Control for Inverted Pendulum Actuated by Stepper Motor
Stabilization and tracking problems for cart inverted pendulums under disturbances and uncertainties have posed significant challenges for control engineers. While various controllers have been designed for an inverted pendulum, they often overlook the calibration error of the pendulum angle in prac...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Machines |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2075-1702/13/5/405 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Stabilization and tracking problems for cart inverted pendulums under disturbances and uncertainties have posed significant challenges for control engineers. While various controllers have been designed for an inverted pendulum, they often overlook the calibration error of the pendulum angle in practical implementations, which degrades the control performance. Incorrect calibration of the pendulum angle in upright equilibrium position generates an offset of cart position errors. To solve this problem, an augmented model comprising integral cart position errors was first constructed. Afterwards, a sliding mode control was designed for this system based on a linear quadratic controller, to facilitate implementation. Additionally, a stepper motor was employed in the inverted pendulum to enhance the control performance and widen applicability in industrial settings. The effectiveness and performance of the proposed controller were validated by means of experimental studies, focusing on stabilization control and tracking control of a cart inverted pendulum actuated by a stepper motor. |
|---|---|
| ISSN: | 2075-1702 |