Generalized Diffusion Equation Associated with a Power-Law Correlated Continuous Time Random Walk

In this work, a generalization of continuous time random walk is considered, where the waiting times among the subsequent jumps are power-law correlated with kernel function M(t)=tρ(ρ>-1). In a continuum limit, the correlated continuous time random walk converges in distribution a subordinated pr...

Full description

Saved in:
Bibliographic Details
Main Author: Long Shi
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:Advances in Mathematical Physics
Online Access:http://dx.doi.org/10.1155/2019/3479715
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, a generalization of continuous time random walk is considered, where the waiting times among the subsequent jumps are power-law correlated with kernel function M(t)=tρ(ρ>-1). In a continuum limit, the correlated continuous time random walk converges in distribution a subordinated process. The mean square displacement of the proposed process is computed, which is of the form 〈x2(t)〉∝tH=t1/(1+ρ+1/α). The anomy exponent H varies from α to α/(1+α) when -1<ρ<0 and from α/(1+α) to 0 when ρ>0. The generalized diffusion equation of the process is also derived, which has a unified form for the above two cases.
ISSN:1687-9120
1687-9139