Shape Sensing of Plate and Shell Structures Undergoing Large Displacements Using the Inverse Finite Element Method

The inverse Finite Element Method (iFEM) is applied to reconstruct the displacement field of a shell structure which undergoes large deformations using discreet strain measurements as the prescribed data. The iFEM computations are carried out using an incremental procedure where at each load step, t...

Full description

Saved in:
Bibliographic Details
Main Authors: Alexander Tessler, Rinto Roy, Marco Esposito, Cecilia Surace, Marco Gherlone
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2018/8076085
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The inverse Finite Element Method (iFEM) is applied to reconstruct the displacement field of a shell structure which undergoes large deformations using discreet strain measurements as the prescribed data. The iFEM computations are carried out using an incremental procedure where at each load step, the incremental strains are used to evaluate the incremental displacements which in turn update the geometry of the deformed structure. The efficacy of the proposed approach to predict large displacements is examined using two case studies involving a cantilevered wing-shaped plate and a clamped plate. The incremental iFEM procedure is demonstrated to be sufficiently accurate in terms of reproducing the correct nonlinear character of the load-displacement curve even when a reduced number of strain sensors is used. Therefore, this approach may have important implications for real-time monitoring of aerospace structures that undergo large displacements.
ISSN:1070-9622
1875-9203