COMPUTAÇÃO QUÂNTICA EM QUÍMICA
QUANTUM COMPUTING IN CHEMISTRY. Quantum computing offers transformative potential for quantum chemistry, enabling the exploration of complex molecular simulations with unprecedented accuracy. By leveraging qubits and powerful quantum algorithms like the variational quantum eigensolver (VQE) and quan...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Sociedade Brasileira de Química
2025-01-01
|
Series: | Química Nova |
Online Access: | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422025000200214&lng=pt&tlng=pt |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832592570603012096 |
---|---|
author | Caio M. Porto Matheus S. Fonseca Guilherme de S. T. Morais Celso J. Villas-Boas Rene A. Nome Nelson H. Morgon |
author_facet | Caio M. Porto Matheus S. Fonseca Guilherme de S. T. Morais Celso J. Villas-Boas Rene A. Nome Nelson H. Morgon |
author_sort | Caio M. Porto |
collection | DOAJ |
description | QUANTUM COMPUTING IN CHEMISTRY. Quantum computing offers transformative potential for quantum chemistry, enabling the exploration of complex molecular simulations with unprecedented accuracy. By leveraging qubits and powerful quantum algorithms like the variational quantum eigensolver (VQE) and quantum phase estimation (QPE), quantum computing provides a novel approach to unraveling the intricacies of electronic structures and properties of molecules. While challenges persist in qubit stability and error mitigation, continuous innovation is fostered by collaborative efforts between the quantum computing and chemistry communities. These collaborations pave the way for groundbreaking advancements in drug discovery and materials science. This research employed quantum computing simulators to investigate the potential energy surface (PES) of the H2 molecule at the CCSD/STO-3G level of theory. These simulators, leveraging qubits and sophisticated algorithms, facilitated the acquisition of detailed information regarding the electronic structure, bonding mechanisms, and spectroscopic properties of the diatomic molecules. |
format | Article |
id | doaj-art-63deefcaceb74a9e87445a0828848518 |
institution | Kabale University |
issn | 1678-7064 |
language | English |
publishDate | 2025-01-01 |
publisher | Sociedade Brasileira de Química |
record_format | Article |
series | Química Nova |
spelling | doaj-art-63deefcaceb74a9e87445a08288485182025-01-21T07:35:25ZengSociedade Brasileira de QuímicaQuímica Nova1678-70642025-01-0148210.21577/0100-4042.20250072COMPUTAÇÃO QUÂNTICA EM QUÍMICACaio M. Portohttps://orcid.org/0000-0002-3180-8331Matheus S. FonsecaGuilherme de S. T. MoraisCelso J. Villas-BoasRene A. Nomehttps://orcid.org/0000-0003-4804-3395Nelson H. Morgonhttps://orcid.org/0000-0002-8349-8179QUANTUM COMPUTING IN CHEMISTRY. Quantum computing offers transformative potential for quantum chemistry, enabling the exploration of complex molecular simulations with unprecedented accuracy. By leveraging qubits and powerful quantum algorithms like the variational quantum eigensolver (VQE) and quantum phase estimation (QPE), quantum computing provides a novel approach to unraveling the intricacies of electronic structures and properties of molecules. While challenges persist in qubit stability and error mitigation, continuous innovation is fostered by collaborative efforts between the quantum computing and chemistry communities. These collaborations pave the way for groundbreaking advancements in drug discovery and materials science. This research employed quantum computing simulators to investigate the potential energy surface (PES) of the H2 molecule at the CCSD/STO-3G level of theory. These simulators, leveraging qubits and sophisticated algorithms, facilitated the acquisition of detailed information regarding the electronic structure, bonding mechanisms, and spectroscopic properties of the diatomic molecules.http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422025000200214&lng=pt&tlng=pt |
spellingShingle | Caio M. Porto Matheus S. Fonseca Guilherme de S. T. Morais Celso J. Villas-Boas Rene A. Nome Nelson H. Morgon COMPUTAÇÃO QUÂNTICA EM QUÍMICA Química Nova |
title | COMPUTAÇÃO QUÂNTICA EM QUÍMICA |
title_full | COMPUTAÇÃO QUÂNTICA EM QUÍMICA |
title_fullStr | COMPUTAÇÃO QUÂNTICA EM QUÍMICA |
title_full_unstemmed | COMPUTAÇÃO QUÂNTICA EM QUÍMICA |
title_short | COMPUTAÇÃO QUÂNTICA EM QUÍMICA |
title_sort | computacao quantica em quimica |
url | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422025000200214&lng=pt&tlng=pt |
work_keys_str_mv | AT caiomporto computacaoquanticaemquimica AT matheussfonseca computacaoquanticaemquimica AT guilhermedestmorais computacaoquanticaemquimica AT celsojvillasboas computacaoquanticaemquimica AT reneanome computacaoquanticaemquimica AT nelsonhmorgon computacaoquanticaemquimica |