Study on the evolution of internal resistance and entropy-thermal coefficients during the aging process of lithium-ion traction batteries

The relationship between internal resistance and entropy-thermal coefficients significantly influences the thermal behavior and performance of traction batteries. This study systematically investigates four types of traction batteries under varying state of charge (SOC) (0 %–100 %) and temperature c...

Full description

Saved in:
Bibliographic Details
Main Authors: Tianyi Ma, Zhipeng Sun, Ce Han, Yingzhou Wang, Baoqiang Zhang, Jinjie Zhang, Liduo Chen, Xiaoqian Dai, Shijie Zhang, Shaopeng Shen
Format: Article
Language:English
Published: Elsevier 2025-06-01
Series:e-Prime: Advances in Electrical Engineering, Electronics and Energy
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2772671125000695
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The relationship between internal resistance and entropy-thermal coefficients significantly influences the thermal behavior and performance of traction batteries. This study systematically investigates four types of traction batteries under varying state of charge (SOC) (0 %–100 %) and temperature conditions (–20 °C to 55 °C), analyzing their entropy-thermal coefficients and internal resistance variations. Experimental results reveal that entropy-thermal coefficients exhibit non-linear changes with SOC, where values range from –1.2 mV/K to 2.8 mV/K, directly impacting heat generation. Additionally, internal resistance varies significantly with SOC and temperature, increasing by over 300 % in low-temperature conditions compared to room temperature. These findings highlight the necessity of adaptive thermal management strategies considering both internal resistance and entropy-thermal coefficients, provide new insights for optimizing battery thermal behavior and lifespan by integrating dynamic entropy-thermal models into battery management systems.
ISSN:2772-6711