The Pseudoinverse Gradient Descent Method with Eight Branch Directions (8B-PGDM): An Improved Dead Reckoning Algorithm Based on the Local Invariance of Navigation

This paper establishes a fundamental connection between the local time invariance of motion parameters and dead reckoning (DR) accuracy. This insight enables the reformulation of navigation parameter estimation as a convex optimization problem solvable through our novel Eight-Branch Pseudoinverse Gr...

Full description

Saved in:
Bibliographic Details
Main Authors: Jialong Gao, Quan Liu, Hanqiang Deng, Lei Sun, Jian Huang, Ming Lei
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/9/5049
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849312835043065856
author Jialong Gao
Quan Liu
Hanqiang Deng
Lei Sun
Jian Huang
Ming Lei
author_facet Jialong Gao
Quan Liu
Hanqiang Deng
Lei Sun
Jian Huang
Ming Lei
author_sort Jialong Gao
collection DOAJ
description This paper establishes a fundamental connection between the local time invariance of motion parameters and dead reckoning (DR) accuracy. This insight enables the reformulation of navigation parameter estimation as a convex optimization problem solvable through our novel Eight-Branch Pseudoinverse Gradient Descent Method (8B-PGDM). This method addresses non-cooperative positioning challenges in sparse-sensor regimes, particularly enabling real-time trajectory prediction when facing intermittent measurements (e.g., <5 Hz sampling rates) or persistent signal blockages. This method achieves an excellent estimation accuracy with only three samplings and an prediction MSE of <inline-formula data-eusoft-scrollable-element="1"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" data-eusoft-scrollable-element="1"><semantics data-eusoft-scrollable-element="1"><mrow data-eusoft-scrollable-element="1"><mn data-eusoft-scrollable-element="1">0.7906</mn></mrow></semantics></math></inline-formula>, significantly better than traditional dead reckoning (DR) methods. This approach effectively mitigates the impact of data scarcity, enabling robust and accurate trajectory predictions in challenging environments.
format Article
id doaj-art-63ab0e4251b94e69b8701cf812e4f3d8
institution Kabale University
issn 2076-3417
language English
publishDate 2025-05-01
publisher MDPI AG
record_format Article
series Applied Sciences
spelling doaj-art-63ab0e4251b94e69b8701cf812e4f3d82025-08-20T03:52:57ZengMDPI AGApplied Sciences2076-34172025-05-01159504910.3390/app15095049The Pseudoinverse Gradient Descent Method with Eight Branch Directions (8B-PGDM): An Improved Dead Reckoning Algorithm Based on the Local Invariance of NavigationJialong Gao0Quan Liu1Hanqiang Deng2Lei Sun3Jian Huang4Ming Lei5College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, ChinaCollege of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, ChinaCollege of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, ChinaCollege of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, ChinaCollege of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, ChinaDepartment of Automation, Tsinghua University, Beijing 100084, ChinaThis paper establishes a fundamental connection between the local time invariance of motion parameters and dead reckoning (DR) accuracy. This insight enables the reformulation of navigation parameter estimation as a convex optimization problem solvable through our novel Eight-Branch Pseudoinverse Gradient Descent Method (8B-PGDM). This method addresses non-cooperative positioning challenges in sparse-sensor regimes, particularly enabling real-time trajectory prediction when facing intermittent measurements (e.g., <5 Hz sampling rates) or persistent signal blockages. This method achieves an excellent estimation accuracy with only three samplings and an prediction MSE of <inline-formula data-eusoft-scrollable-element="1"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" data-eusoft-scrollable-element="1"><semantics data-eusoft-scrollable-element="1"><mrow data-eusoft-scrollable-element="1"><mn data-eusoft-scrollable-element="1">0.7906</mn></mrow></semantics></math></inline-formula>, significantly better than traditional dead reckoning (DR) methods. This approach effectively mitigates the impact of data scarcity, enabling robust and accurate trajectory predictions in challenging environments.https://www.mdpi.com/2076-3417/15/9/5049dead reckoning algorithmlocal invariancesparse sensor dataiterative optimization algorithm
spellingShingle Jialong Gao
Quan Liu
Hanqiang Deng
Lei Sun
Jian Huang
Ming Lei
The Pseudoinverse Gradient Descent Method with Eight Branch Directions (8B-PGDM): An Improved Dead Reckoning Algorithm Based on the Local Invariance of Navigation
Applied Sciences
dead reckoning algorithm
local invariance
sparse sensor data
iterative optimization algorithm
title The Pseudoinverse Gradient Descent Method with Eight Branch Directions (8B-PGDM): An Improved Dead Reckoning Algorithm Based on the Local Invariance of Navigation
title_full The Pseudoinverse Gradient Descent Method with Eight Branch Directions (8B-PGDM): An Improved Dead Reckoning Algorithm Based on the Local Invariance of Navigation
title_fullStr The Pseudoinverse Gradient Descent Method with Eight Branch Directions (8B-PGDM): An Improved Dead Reckoning Algorithm Based on the Local Invariance of Navigation
title_full_unstemmed The Pseudoinverse Gradient Descent Method with Eight Branch Directions (8B-PGDM): An Improved Dead Reckoning Algorithm Based on the Local Invariance of Navigation
title_short The Pseudoinverse Gradient Descent Method with Eight Branch Directions (8B-PGDM): An Improved Dead Reckoning Algorithm Based on the Local Invariance of Navigation
title_sort pseudoinverse gradient descent method with eight branch directions 8b pgdm an improved dead reckoning algorithm based on the local invariance of navigation
topic dead reckoning algorithm
local invariance
sparse sensor data
iterative optimization algorithm
url https://www.mdpi.com/2076-3417/15/9/5049
work_keys_str_mv AT jialonggao thepseudoinversegradientdescentmethodwitheightbranchdirections8bpgdmanimproveddeadreckoningalgorithmbasedonthelocalinvarianceofnavigation
AT quanliu thepseudoinversegradientdescentmethodwitheightbranchdirections8bpgdmanimproveddeadreckoningalgorithmbasedonthelocalinvarianceofnavigation
AT hanqiangdeng thepseudoinversegradientdescentmethodwitheightbranchdirections8bpgdmanimproveddeadreckoningalgorithmbasedonthelocalinvarianceofnavigation
AT leisun thepseudoinversegradientdescentmethodwitheightbranchdirections8bpgdmanimproveddeadreckoningalgorithmbasedonthelocalinvarianceofnavigation
AT jianhuang thepseudoinversegradientdescentmethodwitheightbranchdirections8bpgdmanimproveddeadreckoningalgorithmbasedonthelocalinvarianceofnavigation
AT minglei thepseudoinversegradientdescentmethodwitheightbranchdirections8bpgdmanimproveddeadreckoningalgorithmbasedonthelocalinvarianceofnavigation
AT jialonggao pseudoinversegradientdescentmethodwitheightbranchdirections8bpgdmanimproveddeadreckoningalgorithmbasedonthelocalinvarianceofnavigation
AT quanliu pseudoinversegradientdescentmethodwitheightbranchdirections8bpgdmanimproveddeadreckoningalgorithmbasedonthelocalinvarianceofnavigation
AT hanqiangdeng pseudoinversegradientdescentmethodwitheightbranchdirections8bpgdmanimproveddeadreckoningalgorithmbasedonthelocalinvarianceofnavigation
AT leisun pseudoinversegradientdescentmethodwitheightbranchdirections8bpgdmanimproveddeadreckoningalgorithmbasedonthelocalinvarianceofnavigation
AT jianhuang pseudoinversegradientdescentmethodwitheightbranchdirections8bpgdmanimproveddeadreckoningalgorithmbasedonthelocalinvarianceofnavigation
AT minglei pseudoinversegradientdescentmethodwitheightbranchdirections8bpgdmanimproveddeadreckoningalgorithmbasedonthelocalinvarianceofnavigation