Chaotic numerical instabilities arising in the transition from differential to difference nonlinear equations

For computational purposes, a numerical algorithm maps a differential equation into an often complex difference equation whose structure and stability depends on the scheme used. When considering nonlinear models, standard and nonstandard integration routines can act invasively and numerical chaotic...

Full description

Saved in:
Bibliographic Details
Main Author: Alicia Serfaty de Markus
Format: Article
Language:English
Published: Wiley 2000-01-01
Series:Discrete Dynamics in Nature and Society
Subjects:
Online Access:http://dx.doi.org/10.1155/S1026022600000029
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For computational purposes, a numerical algorithm maps a differential equation into an often complex difference equation whose structure and stability depends on the scheme used. When considering nonlinear models, standard and nonstandard integration routines can act invasively and numerical chaotic instabilities may arise. However, because nonstandard schemes offer a direct and generally simpler finite-difference representations, in this work nonstandard constructions were tested over three different systems: a photoconductor model, the Lorenz equations and the Van der Pol equations. Results showed that although some nonstandard constructions created a chaotic dynamics of their own, there was found a construction in every case that greatly reduced or successfully removed numerical chaotic instabilities. These improvements represent a valuable development to incorporate into more sophisticated algorithms.
ISSN:1026-0226
1607-887X