Post-Quantum Homomorphic Encryption: A Case for Code-Based Alternatives
Homomorphic Encryption (HE) allows secure and privacy-protected computation on encrypted data without the need to decrypt it. Since Shor’s algorithm rendered prime factorisation and discrete logarithm-based ciphers insecure with quantum computations, researchers have been working on building post-qu...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Cryptography |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2410-387X/9/2/31 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Homomorphic Encryption (HE) allows secure and privacy-protected computation on encrypted data without the need to decrypt it. Since Shor’s algorithm rendered prime factorisation and discrete logarithm-based ciphers insecure with quantum computations, researchers have been working on building post-quantum homomorphic encryption (PQHE) algorithms. Most of the current PQHE algorithms are secured by Lattice-based problems and there have been limited attempts to build ciphers based on error-correcting code-based problems. This review presents an overview of the current approaches to building PQHE schemes and justifies code-based encryption as a novel way to diversify post-quantum algorithms. We present the mathematical underpinnings of existing code-based cryptographic frameworks and their security and efficiency guarantees. We compare lattice-based and code-based homomorphic encryption solutions identifying challenges that have inhibited the progress of code-based schemes. We finally propose five new research directions to advance post-quantum code-based homomorphic encryption. |
|---|---|
| ISSN: | 2410-387X |