Fault Feature Extraction and Diagnosis of Gearbox Based on EEMD and Deep Briefs Network

A gear transmission system is a complex nonstationary and nonlinear time-varying coupling system. When faults occur on gear system, it is difficult to extract the fault feature. In this paper, a novel fault diagnosis method based on ensemble empirical mode decomposition (EEMD) and Deep Briefs Networ...

Full description

Saved in:
Bibliographic Details
Main Authors: Kai Chen, Xin-Cong Zhou, Jun-Qiang Fang, Peng-fei Zheng, Jun Wang
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:International Journal of Rotating Machinery
Online Access:http://dx.doi.org/10.1155/2017/9602650
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A gear transmission system is a complex nonstationary and nonlinear time-varying coupling system. When faults occur on gear system, it is difficult to extract the fault feature. In this paper, a novel fault diagnosis method based on ensemble empirical mode decomposition (EEMD) and Deep Briefs Network (DBN) is proposed to treat the vibration signals measured from gearbox. The original data is decomposed into a set of intrinsic mode functions (IMFs) using EEMD, and then main IMFs were chosen for reconstructed signal to suppress abnormal interference from noise. The reconstructed signals were regarded as input of DBN to identify gearbox working states and fault types. To verify the effectiveness of the EEMD-DBN in detecting the faults, a series of gear fault simulate experiments at different states were carried out. Results showed that the proposed method which coupled EEMD and DBN can improve the accuracy of gear fault identification and it is capable of applying to fault diagnosis in practical application.
ISSN:1023-621X
1542-3034