Positive Solutions for the Initial Value Problems of Fractional Evolution Equation
This paper discusses the existence of positive solutions for the initial value problem of fractional evolution equation with noncompact semigroup , ; in a Banach space , where denotes the Caputo fractional derivative of order , is a closed linear operator, generates an equicontinuous semigroup,...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2013-01-01
|
Series: | Journal of Function Spaces and Applications |
Online Access: | http://dx.doi.org/10.1155/2013/781404 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper discusses the existence of positive solutions for the initial value problem of fractional evolution equation with noncompact semigroup , ; in a Banach space , where denotes the Caputo fractional derivative of order , is a closed linear operator, generates an equicontinuous semigroup, and is continuous. In the case where satisfies a weaker measure of noncompactness condition and a weaker boundedness condition, the existence results of positive and saturated mild solutions are obtained. Particularly, an existence result without using measure of noncompactness condition is presented in ordered and weakly sequentially complete Banach spaces. These results are very convenient for application. As an example, we study the partial differential equation of parabolic type of fractional order. |
---|---|
ISSN: | 0972-6802 1758-4965 |