Second-Order Regularity Estimates for Singular Schrödinger Equations on Convex Domains
Let Ω⊂ℝn be a nonsmooth convex domain and let f be a distribution in the atomic Hardy space Hatp(Ω); we study the Schrödinger equations -div(A∇u)+Vu=f in Ω with the singular potential V and the nonsmooth coefficient matrix A. We will show the existence of the Green function and establish the Lp int...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2014/216867 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832561429334458368 |
---|---|
author | Xiangxing Tao |
author_facet | Xiangxing Tao |
author_sort | Xiangxing Tao |
collection | DOAJ |
description | Let Ω⊂ℝn be a nonsmooth convex domain and let f be a distribution in the atomic Hardy space Hatp(Ω); we study the Schrödinger equations -div(A∇u)+Vu=f in Ω with the singular potential V and the nonsmooth coefficient matrix A. We will show the existence of the Green function and establish the Lp integrability of the second-order derivative of the solution to the Schrödinger equation on Ω with the Dirichlet boundary condition for n/(n+1)<p≤2. Some fundamental pointwise estimates for the Green function are also given. |
format | Article |
id | doaj-art-62d91ac7e4a24cc8aba8fd1998ccc1a9 |
institution | Kabale University |
issn | 1085-3375 1687-0409 |
language | English |
publishDate | 2014-01-01 |
publisher | Wiley |
record_format | Article |
series | Abstract and Applied Analysis |
spelling | doaj-art-62d91ac7e4a24cc8aba8fd1998ccc1a92025-02-03T01:25:06ZengWileyAbstract and Applied Analysis1085-33751687-04092014-01-01201410.1155/2014/216867216867Second-Order Regularity Estimates for Singular Schrödinger Equations on Convex DomainsXiangxing Tao0Department of Mathematics, Zhejiang University of Science and Technology, Hangzhou 310023, ChinaLet Ω⊂ℝn be a nonsmooth convex domain and let f be a distribution in the atomic Hardy space Hatp(Ω); we study the Schrödinger equations -div(A∇u)+Vu=f in Ω with the singular potential V and the nonsmooth coefficient matrix A. We will show the existence of the Green function and establish the Lp integrability of the second-order derivative of the solution to the Schrödinger equation on Ω with the Dirichlet boundary condition for n/(n+1)<p≤2. Some fundamental pointwise estimates for the Green function are also given.http://dx.doi.org/10.1155/2014/216867 |
spellingShingle | Xiangxing Tao Second-Order Regularity Estimates for Singular Schrödinger Equations on Convex Domains Abstract and Applied Analysis |
title | Second-Order Regularity Estimates for Singular Schrödinger Equations on Convex Domains |
title_full | Second-Order Regularity Estimates for Singular Schrödinger Equations on Convex Domains |
title_fullStr | Second-Order Regularity Estimates for Singular Schrödinger Equations on Convex Domains |
title_full_unstemmed | Second-Order Regularity Estimates for Singular Schrödinger Equations on Convex Domains |
title_short | Second-Order Regularity Estimates for Singular Schrödinger Equations on Convex Domains |
title_sort | second order regularity estimates for singular schrodinger equations on convex domains |
url | http://dx.doi.org/10.1155/2014/216867 |
work_keys_str_mv | AT xiangxingtao secondorderregularityestimatesforsingularschrodingerequationsonconvexdomains |