Second-Order Regularity Estimates for Singular Schrödinger Equations on Convex Domains

Let Ω⊂ℝn be a nonsmooth convex domain and let f be a distribution in the atomic Hardy space Hatp(Ω); we study the Schrödinger equations -div⁡(A∇u)+Vu=f in Ω with the singular potential V and the nonsmooth coefficient matrix A. We will show the existence of the Green function and establish the Lp int...

Full description

Saved in:
Bibliographic Details
Main Author: Xiangxing Tao
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2014/216867
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832561429334458368
author Xiangxing Tao
author_facet Xiangxing Tao
author_sort Xiangxing Tao
collection DOAJ
description Let Ω⊂ℝn be a nonsmooth convex domain and let f be a distribution in the atomic Hardy space Hatp(Ω); we study the Schrödinger equations -div⁡(A∇u)+Vu=f in Ω with the singular potential V and the nonsmooth coefficient matrix A. We will show the existence of the Green function and establish the Lp integrability of the second-order derivative of the solution to the Schrödinger equation on Ω with the Dirichlet boundary condition for n/(n+1)<p≤2. Some fundamental pointwise estimates for the Green function are also given.
format Article
id doaj-art-62d91ac7e4a24cc8aba8fd1998ccc1a9
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2014-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-62d91ac7e4a24cc8aba8fd1998ccc1a92025-02-03T01:25:06ZengWileyAbstract and Applied Analysis1085-33751687-04092014-01-01201410.1155/2014/216867216867Second-Order Regularity Estimates for Singular Schrödinger Equations on Convex DomainsXiangxing Tao0Department of Mathematics, Zhejiang University of Science and Technology, Hangzhou 310023, ChinaLet Ω⊂ℝn be a nonsmooth convex domain and let f be a distribution in the atomic Hardy space Hatp(Ω); we study the Schrödinger equations -div⁡(A∇u)+Vu=f in Ω with the singular potential V and the nonsmooth coefficient matrix A. We will show the existence of the Green function and establish the Lp integrability of the second-order derivative of the solution to the Schrödinger equation on Ω with the Dirichlet boundary condition for n/(n+1)<p≤2. Some fundamental pointwise estimates for the Green function are also given.http://dx.doi.org/10.1155/2014/216867
spellingShingle Xiangxing Tao
Second-Order Regularity Estimates for Singular Schrödinger Equations on Convex Domains
Abstract and Applied Analysis
title Second-Order Regularity Estimates for Singular Schrödinger Equations on Convex Domains
title_full Second-Order Regularity Estimates for Singular Schrödinger Equations on Convex Domains
title_fullStr Second-Order Regularity Estimates for Singular Schrödinger Equations on Convex Domains
title_full_unstemmed Second-Order Regularity Estimates for Singular Schrödinger Equations on Convex Domains
title_short Second-Order Regularity Estimates for Singular Schrödinger Equations on Convex Domains
title_sort second order regularity estimates for singular schrodinger equations on convex domains
url http://dx.doi.org/10.1155/2014/216867
work_keys_str_mv AT xiangxingtao secondorderregularityestimatesforsingularschrodingerequationsonconvexdomains