Second-Order Regularity Estimates for Singular Schrödinger Equations on Convex Domains

Let Ω⊂ℝn be a nonsmooth convex domain and let f be a distribution in the atomic Hardy space Hatp(Ω); we study the Schrödinger equations -div⁡(A∇u)+Vu=f in Ω with the singular potential V and the nonsmooth coefficient matrix A. We will show the existence of the Green function and establish the Lp int...

Full description

Saved in:
Bibliographic Details
Main Author: Xiangxing Tao
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2014/216867
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let Ω⊂ℝn be a nonsmooth convex domain and let f be a distribution in the atomic Hardy space Hatp(Ω); we study the Schrödinger equations -div⁡(A∇u)+Vu=f in Ω with the singular potential V and the nonsmooth coefficient matrix A. We will show the existence of the Green function and establish the Lp integrability of the second-order derivative of the solution to the Schrödinger equation on Ω with the Dirichlet boundary condition for n/(n+1)<p≤2. Some fundamental pointwise estimates for the Green function are also given.
ISSN:1085-3375
1687-0409