Construction of the Global Solutions to the Perturbed Riemann Problem for the Leroux System

The global solutions of the perturbed Riemann problem for the Leroux system are constructed explicitly under the suitable assumptions when the initial data are taken to be three piecewise constant states. The wave interaction problems are widely investigated during the process of constructing global...

Full description

Saved in:
Bibliographic Details
Main Authors: Pengpeng Ji, Chun Shen
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Advances in Mathematical Physics
Online Access:http://dx.doi.org/10.1155/2016/4808610
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The global solutions of the perturbed Riemann problem for the Leroux system are constructed explicitly under the suitable assumptions when the initial data are taken to be three piecewise constant states. The wave interaction problems are widely investigated during the process of constructing global solutions with the help of the geometrical structures of the shock and rarefaction curves in the phase plane. In addition, it is shown that the Riemann solutions are stable with respect to the specific small perturbations of the Riemann initial data.
ISSN:1687-9120
1687-9139