Mission Sequence Model and Deep Reinforcement Learning-Based Replanning Method for Multi-Satellite Observation
With the rapid increase in the number of Earth Observation Satellites (EOSs), research on autonomous mission scheduling has become increasingly critical for optimizing satellite sensor operations. While most existing studies focus on static environments or initial planning states, few address the ch...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Sensors |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1424-8220/25/6/1707 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | With the rapid increase in the number of Earth Observation Satellites (EOSs), research on autonomous mission scheduling has become increasingly critical for optimizing satellite sensor operations. While most existing studies focus on static environments or initial planning states, few address the challenge of dynamic request replanning for real-time sensor management. In this paper, we tackle the problem of multi-satellite rapid mission replanning under dynamic batch-arrival observation requests. The objective is to maximize overall observation revenue while minimizing disruptions to the original scheme. We propose a framework that integrates stochastic master-satellite mission allocation with single-satellite replanning, supported by reactive scheduling policies trained via deep reinforcement learning. Our approach leverages mission sequence modeling with attention mechanisms and time-attitude-aware rotary positional encoding to guide replanning. Additionally, scalable embeddings are employed to handle varying volumes of dynamic requests. The mission allocation phase efficiently generates assignment solutions using a pointer network, while the replanning phase introduces a hybrid action space for direct task insertion. Both phases are formulated as Markov Decision Processes (MDPs) and optimized using the PPO algorithm. Extensive simulations demonstrate that our method significantly outperforms state-of-the-art approaches, achieving a 15.27% higher request insertion revenue rate and a 3.05% improvement in overall mission revenue rate, while maintaining a 1.17% lower modification rate and achieving faster computational speeds. This demonstrates the effectiveness of our approach in real-world satellite sensor applications. |
|---|---|
| ISSN: | 1424-8220 |