A Modified RBF Neuro-Sliding Mode Control Technique for a Grid Connected PMSG Based Variable Speed Wind Energy Conversion System
A modified control scheme based on the combination of online trained neural network and sliding mode techniques is proposed to enhance maximum power extraction for a grid connected permanent magnet synchronous generator (PMSG) wind turbine system. The proposed control method does not need the knowle...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2018-01-01
|
Series: | Journal of Control Science and Engineering |
Online Access: | http://dx.doi.org/10.1155/2018/1780634 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832554937356124160 |
---|---|
author | Rostand Marc Douanla Godpromesse Kenné François Béceau Pelap Armel Simo Fotso |
author_facet | Rostand Marc Douanla Godpromesse Kenné François Béceau Pelap Armel Simo Fotso |
author_sort | Rostand Marc Douanla |
collection | DOAJ |
description | A modified control scheme based on the combination of online trained neural network and sliding mode techniques is proposed to enhance maximum power extraction for a grid connected permanent magnet synchronous generator (PMSG) wind turbine system. The proposed control method does not need the knowledge of the uncertainty bounds nor the exact model of the nonlinear system. Since the neural network is trained online, the time to estimate good weights can affect the dynamic performance of the process during the startup phase. Therefore an appropriate way to smoothly and explicitly accelerate the neural network rate of convergence during the startup phase is proposed. Furthermore, a flexible grid side voltage source converter control structure which can handle both grid connected and standalone modes based on conventional proportional integral (PI) control method is presented. Simulations are done in Matlab/Simulink environment to verify the effectiveness and assess the performance of the proposed controller. The results analysis shows the superiority of the proposed RBF neuro-sliding mode controller compared to a nonlinear controller based on sliding mode control method when the system undergoes parameter uncertainties. |
format | Article |
id | doaj-art-621853cf24804a7bb3c47131ac93acac |
institution | Kabale University |
issn | 1687-5249 1687-5257 |
language | English |
publishDate | 2018-01-01 |
publisher | Wiley |
record_format | Article |
series | Journal of Control Science and Engineering |
spelling | doaj-art-621853cf24804a7bb3c47131ac93acac2025-02-03T05:50:06ZengWileyJournal of Control Science and Engineering1687-52491687-52572018-01-01201810.1155/2018/17806341780634A Modified RBF Neuro-Sliding Mode Control Technique for a Grid Connected PMSG Based Variable Speed Wind Energy Conversion SystemRostand Marc Douanla0Godpromesse Kenné1François Béceau Pelap2Armel Simo Fotso3Unité de Recherche d’Automatique et d’Informatique Appliquée (LAIA), Département de Génie Électrique, IUT FOTSO Victor Bandjoun, Université de Dschang, BP 134, Bandjoun, CameroonUnité de Recherche d’Automatique et d’Informatique Appliquée (LAIA), Département de Génie Électrique, IUT FOTSO Victor Bandjoun, Université de Dschang, BP 134, Bandjoun, CameroonUnité de Recherche de Mécanique et de Modélisation des Systèmes Physiques (L2MSP), Département de Physique, Université de Dschang, BP 69, Dschang, CameroonUnité de Recherche d’Automatique et d’Informatique Appliquée (LAIA), Département de Génie Électrique, IUT FOTSO Victor Bandjoun, Université de Dschang, BP 134, Bandjoun, CameroonA modified control scheme based on the combination of online trained neural network and sliding mode techniques is proposed to enhance maximum power extraction for a grid connected permanent magnet synchronous generator (PMSG) wind turbine system. The proposed control method does not need the knowledge of the uncertainty bounds nor the exact model of the nonlinear system. Since the neural network is trained online, the time to estimate good weights can affect the dynamic performance of the process during the startup phase. Therefore an appropriate way to smoothly and explicitly accelerate the neural network rate of convergence during the startup phase is proposed. Furthermore, a flexible grid side voltage source converter control structure which can handle both grid connected and standalone modes based on conventional proportional integral (PI) control method is presented. Simulations are done in Matlab/Simulink environment to verify the effectiveness and assess the performance of the proposed controller. The results analysis shows the superiority of the proposed RBF neuro-sliding mode controller compared to a nonlinear controller based on sliding mode control method when the system undergoes parameter uncertainties.http://dx.doi.org/10.1155/2018/1780634 |
spellingShingle | Rostand Marc Douanla Godpromesse Kenné François Béceau Pelap Armel Simo Fotso A Modified RBF Neuro-Sliding Mode Control Technique for a Grid Connected PMSG Based Variable Speed Wind Energy Conversion System Journal of Control Science and Engineering |
title | A Modified RBF Neuro-Sliding Mode Control Technique for a Grid Connected PMSG Based Variable Speed Wind Energy Conversion System |
title_full | A Modified RBF Neuro-Sliding Mode Control Technique for a Grid Connected PMSG Based Variable Speed Wind Energy Conversion System |
title_fullStr | A Modified RBF Neuro-Sliding Mode Control Technique for a Grid Connected PMSG Based Variable Speed Wind Energy Conversion System |
title_full_unstemmed | A Modified RBF Neuro-Sliding Mode Control Technique for a Grid Connected PMSG Based Variable Speed Wind Energy Conversion System |
title_short | A Modified RBF Neuro-Sliding Mode Control Technique for a Grid Connected PMSG Based Variable Speed Wind Energy Conversion System |
title_sort | modified rbf neuro sliding mode control technique for a grid connected pmsg based variable speed wind energy conversion system |
url | http://dx.doi.org/10.1155/2018/1780634 |
work_keys_str_mv | AT rostandmarcdouanla amodifiedrbfneuroslidingmodecontroltechniqueforagridconnectedpmsgbasedvariablespeedwindenergyconversionsystem AT godpromessekenne amodifiedrbfneuroslidingmodecontroltechniqueforagridconnectedpmsgbasedvariablespeedwindenergyconversionsystem AT francoisbeceaupelap amodifiedrbfneuroslidingmodecontroltechniqueforagridconnectedpmsgbasedvariablespeedwindenergyconversionsystem AT armelsimofotso amodifiedrbfneuroslidingmodecontroltechniqueforagridconnectedpmsgbasedvariablespeedwindenergyconversionsystem AT rostandmarcdouanla modifiedrbfneuroslidingmodecontroltechniqueforagridconnectedpmsgbasedvariablespeedwindenergyconversionsystem AT godpromessekenne modifiedrbfneuroslidingmodecontroltechniqueforagridconnectedpmsgbasedvariablespeedwindenergyconversionsystem AT francoisbeceaupelap modifiedrbfneuroslidingmodecontroltechniqueforagridconnectedpmsgbasedvariablespeedwindenergyconversionsystem AT armelsimofotso modifiedrbfneuroslidingmodecontroltechniqueforagridconnectedpmsgbasedvariablespeedwindenergyconversionsystem |