A Modified RBF Neuro-Sliding Mode Control Technique for a Grid Connected PMSG Based Variable Speed Wind Energy Conversion System

A modified control scheme based on the combination of online trained neural network and sliding mode techniques is proposed to enhance maximum power extraction for a grid connected permanent magnet synchronous generator (PMSG) wind turbine system. The proposed control method does not need the knowle...

Full description

Saved in:
Bibliographic Details
Main Authors: Rostand Marc Douanla, Godpromesse Kenné, François Béceau Pelap, Armel Simo Fotso
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Journal of Control Science and Engineering
Online Access:http://dx.doi.org/10.1155/2018/1780634
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832554937356124160
author Rostand Marc Douanla
Godpromesse Kenné
François Béceau Pelap
Armel Simo Fotso
author_facet Rostand Marc Douanla
Godpromesse Kenné
François Béceau Pelap
Armel Simo Fotso
author_sort Rostand Marc Douanla
collection DOAJ
description A modified control scheme based on the combination of online trained neural network and sliding mode techniques is proposed to enhance maximum power extraction for a grid connected permanent magnet synchronous generator (PMSG) wind turbine system. The proposed control method does not need the knowledge of the uncertainty bounds nor the exact model of the nonlinear system. Since the neural network is trained online, the time to estimate good weights can affect the dynamic performance of the process during the startup phase. Therefore an appropriate way to smoothly and explicitly accelerate the neural network rate of convergence during the startup phase is proposed. Furthermore, a flexible grid side voltage source converter control structure which can handle both grid connected and standalone modes based on conventional proportional integral (PI) control method is presented. Simulations are done in Matlab/Simulink environment to verify the effectiveness and assess the performance of the proposed controller. The results analysis shows the superiority of the proposed RBF neuro-sliding mode controller compared to a nonlinear controller based on sliding mode control method when the system undergoes parameter uncertainties.
format Article
id doaj-art-621853cf24804a7bb3c47131ac93acac
institution Kabale University
issn 1687-5249
1687-5257
language English
publishDate 2018-01-01
publisher Wiley
record_format Article
series Journal of Control Science and Engineering
spelling doaj-art-621853cf24804a7bb3c47131ac93acac2025-02-03T05:50:06ZengWileyJournal of Control Science and Engineering1687-52491687-52572018-01-01201810.1155/2018/17806341780634A Modified RBF Neuro-Sliding Mode Control Technique for a Grid Connected PMSG Based Variable Speed Wind Energy Conversion SystemRostand Marc Douanla0Godpromesse Kenné1François Béceau Pelap2Armel Simo Fotso3Unité de Recherche d’Automatique et d’Informatique Appliquée (LAIA), Département de Génie Électrique, IUT FOTSO Victor Bandjoun, Université de Dschang, BP 134, Bandjoun, CameroonUnité de Recherche d’Automatique et d’Informatique Appliquée (LAIA), Département de Génie Électrique, IUT FOTSO Victor Bandjoun, Université de Dschang, BP 134, Bandjoun, CameroonUnité de Recherche de Mécanique et de Modélisation des Systèmes Physiques (L2MSP), Département de Physique, Université de Dschang, BP 69, Dschang, CameroonUnité de Recherche d’Automatique et d’Informatique Appliquée (LAIA), Département de Génie Électrique, IUT FOTSO Victor Bandjoun, Université de Dschang, BP 134, Bandjoun, CameroonA modified control scheme based on the combination of online trained neural network and sliding mode techniques is proposed to enhance maximum power extraction for a grid connected permanent magnet synchronous generator (PMSG) wind turbine system. The proposed control method does not need the knowledge of the uncertainty bounds nor the exact model of the nonlinear system. Since the neural network is trained online, the time to estimate good weights can affect the dynamic performance of the process during the startup phase. Therefore an appropriate way to smoothly and explicitly accelerate the neural network rate of convergence during the startup phase is proposed. Furthermore, a flexible grid side voltage source converter control structure which can handle both grid connected and standalone modes based on conventional proportional integral (PI) control method is presented. Simulations are done in Matlab/Simulink environment to verify the effectiveness and assess the performance of the proposed controller. The results analysis shows the superiority of the proposed RBF neuro-sliding mode controller compared to a nonlinear controller based on sliding mode control method when the system undergoes parameter uncertainties.http://dx.doi.org/10.1155/2018/1780634
spellingShingle Rostand Marc Douanla
Godpromesse Kenné
François Béceau Pelap
Armel Simo Fotso
A Modified RBF Neuro-Sliding Mode Control Technique for a Grid Connected PMSG Based Variable Speed Wind Energy Conversion System
Journal of Control Science and Engineering
title A Modified RBF Neuro-Sliding Mode Control Technique for a Grid Connected PMSG Based Variable Speed Wind Energy Conversion System
title_full A Modified RBF Neuro-Sliding Mode Control Technique for a Grid Connected PMSG Based Variable Speed Wind Energy Conversion System
title_fullStr A Modified RBF Neuro-Sliding Mode Control Technique for a Grid Connected PMSG Based Variable Speed Wind Energy Conversion System
title_full_unstemmed A Modified RBF Neuro-Sliding Mode Control Technique for a Grid Connected PMSG Based Variable Speed Wind Energy Conversion System
title_short A Modified RBF Neuro-Sliding Mode Control Technique for a Grid Connected PMSG Based Variable Speed Wind Energy Conversion System
title_sort modified rbf neuro sliding mode control technique for a grid connected pmsg based variable speed wind energy conversion system
url http://dx.doi.org/10.1155/2018/1780634
work_keys_str_mv AT rostandmarcdouanla amodifiedrbfneuroslidingmodecontroltechniqueforagridconnectedpmsgbasedvariablespeedwindenergyconversionsystem
AT godpromessekenne amodifiedrbfneuroslidingmodecontroltechniqueforagridconnectedpmsgbasedvariablespeedwindenergyconversionsystem
AT francoisbeceaupelap amodifiedrbfneuroslidingmodecontroltechniqueforagridconnectedpmsgbasedvariablespeedwindenergyconversionsystem
AT armelsimofotso amodifiedrbfneuroslidingmodecontroltechniqueforagridconnectedpmsgbasedvariablespeedwindenergyconversionsystem
AT rostandmarcdouanla modifiedrbfneuroslidingmodecontroltechniqueforagridconnectedpmsgbasedvariablespeedwindenergyconversionsystem
AT godpromessekenne modifiedrbfneuroslidingmodecontroltechniqueforagridconnectedpmsgbasedvariablespeedwindenergyconversionsystem
AT francoisbeceaupelap modifiedrbfneuroslidingmodecontroltechniqueforagridconnectedpmsgbasedvariablespeedwindenergyconversionsystem
AT armelsimofotso modifiedrbfneuroslidingmodecontroltechniqueforagridconnectedpmsgbasedvariablespeedwindenergyconversionsystem