Novel Algorithms for Solving a System of Absolute Value Variational Inequalities

The goal of this paper is to study a new system of a class of variational inequalities termed as absolute value variational inequalities. Absolute value variational inequalities present a rational, pragmatic, and novel framework for investigating a wide range of equilibrium problems that arise in a...

Full description

Saved in:
Bibliographic Details
Main Authors: Safeera Batool, Muhammad Aslam Noor, Riaz Ahmad, Ilyas Khan, Mulugeta Andualem
Format: Article
Language:English
Published: Wiley 2022-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2022/7572918
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The goal of this paper is to study a new system of a class of variational inequalities termed as absolute value variational inequalities. Absolute value variational inequalities present a rational, pragmatic, and novel framework for investigating a wide range of equilibrium problems that arise in a variety of disciplines. We first develop a system of absolute value auxiliary variational inequalities to calculate the approximate solution of the system of absolute variational inequalities, and then by employing the projection technique, we prove the existence of solutions of the system of absolute value auxiliary variational inequalities. By utilizing an auxiliary principle and the existence result, we propose several new iterative algorithms for solving the system of absolute value auxiliary variational inequalities in the frame of four different operators. Furthermore, the convergence of the proposed algorithms is investigated in a thorough manner. The efficiency and supremacy of the proposed schemes is exhibited through some special cases of the system of absolute value variational inequalities and an illustrative example. The results presented in this paper are more general and rehash a number of some previously published findings in this field.
ISSN:2314-8888