Kink Soliton Solutions in the Logarithmic Schrödinger Equation

We re-examine the mathematical properties of the kink and antikink soliton solutions to the Logarithmic Schrödinger Equation (LogSE), a nonlinear logarithmic version of the Schrödinger Equation incorporating Everett–Hirschman entropy. We devise successive approximations with increasing accuracy. Fro...

Full description

Saved in:
Bibliographic Details
Main Authors: Tony C. Scott, M. Lawrence Glasser
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/5/827
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We re-examine the mathematical properties of the kink and antikink soliton solutions to the Logarithmic Schrödinger Equation (LogSE), a nonlinear logarithmic version of the Schrödinger Equation incorporating Everett–Hirschman entropy. We devise successive approximations with increasing accuracy. From the most successful forms, we formulate an analytical solution that provides a very accurate solution to the LogSE. Finally, we consider combinations of such solutions to mathematically model kink and antikink bound states, which can serve as a possible candidate for modeling dilatonic quantum gravity states.
ISSN:2227-7390