Design Guide for Hybrid-Additive Manufacturing of Inconel 718 Combining PBF-LB/M and In Situ High-Speed Milling
As the correlation between design rules and process limitations is of the upmost importance for the full exploitation of any manufacturing technology, we report a design guide for hybrid-additive manufacturing of Inconel 718. Basic limitations need to be evaluated for this particular hybrid approach...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Journal of Manufacturing and Materials Processing |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2504-4494/9/3/88 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | As the correlation between design rules and process limitations is of the upmost importance for the full exploitation of any manufacturing technology, we report a design guide for hybrid-additive manufacturing of Inconel 718. Basic limitations need to be evaluated for this particular hybrid approach that combines laser powder bed fusion (PBF-LB/M) and in situ high-speed milling. Fundamental geometric limitations are examined with regard to the minimum feasible wall thickness, cylinders, overhanging structures, and chamfers. Furthermore, geometrical restrictions due to the integrated three-axis milling process with respect to inclinations, inner angles, notches, and boreholes are investigated. From these findings, we derive design guidelines for a reliable build process using this hybrid manufacturing. Additionally, a design guideline for the hybrid-additive manufacturing approach is presented, depicting a step-to-step guide for the adjustment of constructions. To demonstrate this, a powder nozzle for a direct energy deposition (DED-LB/M) process is redesigned following the previously defined guidelines. This redesign encompasses analysis of the existing component and identification of problematic areas such as flat angles, leading to a new construction that is suitable for a hybrid-additive manufacturing approach. |
|---|---|
| ISSN: | 2504-4494 |