Five-Phase Modular External Rotor PM Machines with Different Rotor Poles: A Comparative Simulation Study

The performance of fault-tolerant modular permanent magnet machines depends on the proper selection of the pole and slot numbers which result in negligible coupling between phases. The preferred slot and pole number combinations eliminate the effect of low-order harmonics in the stator magnetomotive...

Full description

Saved in:
Bibliographic Details
Main Author: A. S. Abdel-Khalik
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Modelling and Simulation in Engineering
Online Access:http://dx.doi.org/10.1155/2012/487203
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The performance of fault-tolerant modular permanent magnet machines depends on the proper selection of the pole and slot numbers which result in negligible coupling between phases. The preferred slot and pole number combinations eliminate the effect of low-order harmonics in the stator magnetomotive force and thereby the vibration and stray loss are reduced. In this paper, three external rotor machines with identical machine dimensions are designed with different slots per phase per pole ratios. A simulation study is carried out using finite element analysis to compare the performance of the three machines in terms of machine torque density, ripple torque, core loss, and machine efficiency. A mathematical model based on the conventional-phase-model approach is also used for the comparative study. The simulation study is extended to depict machine performance under fault conditions.
ISSN:1687-5591
1687-5605