Entropic Entanglement: Information Prison Break

We argue that certain nonviolent local quantum field theory (LQFT) modification considered at the global horizon (r=2M) of a static spherically symmetric black hole can lead to adiabatic leakage of quantum information in the form of Hawking particles. The source of the modification is (i) smooth at...

Full description

Saved in:
Bibliographic Details
Main Authors: Alexander Y. Yosifov, Lachezar G. Filipov
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:Advances in High Energy Physics
Online Access:http://dx.doi.org/10.1155/2017/8621513
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We argue that certain nonviolent local quantum field theory (LQFT) modification considered at the global horizon (r=2M) of a static spherically symmetric black hole can lead to adiabatic leakage of quantum information in the form of Hawking particles. The source of the modification is (i) smooth at r=2M and (ii) rapidly vanishing at r≫2M. Furthermore, we restore the unitary evolution by introducing extra quanta which departs slightly from the generic Hawking emission without changing the experience of an infalling observer (no drama). Also, we suggest that a possible interpretation of the Bekenstein-Hawking bound as entanglement entropy may yield a nonsingular dynamical horizon behavior described by black hole thermodynamics. Hence, by treating gravity as a field theory and considering its coupling to the matter fields in the Minkowski vacuum, we derive the conjectured fluctuations of the background geometry of a black hole.
ISSN:1687-7357
1687-7365